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1

Chapter 0

What this Book Is, and What It Is Not

The field of communication and computer networks is bustling with activity. One
of the active areas falls under the rubric “performance.” Researchers and devel-
opment engineers tackle systems that are huge, complex and fast; think of the
telephone network in the United States. The resulting models are, for the most
part, discrete-event, continuous time stochastic processes, technically known as
jump Markov processes. The objective is to analyze the behavior of these sys-
tems, with the goal of designing systems that provide better service. “Better” may
mean faster, less prone to error and breakdown, more efficient, or improved by
many other criteria.

Until quite recently, the tools brought to bear on these problems were appro-
priate for small, simple systems. Some of these methods take into account only
average behavior (or perhaps variances). But this is often not enough, as the per-
formance of many systems is limited by events with a small probability of occur-
ring, but with consequences that are severe. Clearly, new tools are needed. Com-
puter simulation is one relatively new tool. But this method, for all its power, is
limited in that it usually does not provide rules of thumb for design, may not give
estimates on the sensitivity of results to various parameters, and can be extremely
costly in terms of both computer time and programming (especially debugging)
time. Analytic methods clearly retain some advantages. This book is about a fairly
new analytic method called large deviations.

Large deviations is a mathematical theory that is very active at present. The
theory deals with rare events, and is asymptotic in nature; it is thus a natural can-
didate for analyzing rare events in large systems. The theory of large deviations
includes a set of techniques for turning hard probability problems that concern a
class of rare events into analytic problems in the calculus of variations. It also
provides a nice qualitative theory for understanding rare events. As an asymp-
totic technique, its effectiveness resides in the relative simplicity with which one
may analyze systems whose size may be growing with the asymptotic parameter,
or whose “conditioning” may be getting worse. The theory is often useful even
when simulation or other numerical techniques become increasingly difficult as
the parameter tends to its limit.

However, the theory is noted for being technically (mathematically) very de-
manding, and solving a problem in the calculus of variations is not typically an en-
gineer’s dream. Although the theory is being increasingly used for analyzing rare
events in large systems, this is done by a relatively small number of researchers.
We believe that the reason for this state of affairs is that the theory is not easily ac-
cessible to non-mathematicians, and the final results seem to require an additional
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Chapter 0. WHAT THIS BOOK IS, AND WHAT IT IS NOT

translation to engineering lingo. Hence

Large deviations is useful.
Large deviations is formidably technical.

What’s a student to do?

Herein is contained one point of view on what’s to do. We develop the theory
of large deviations from the beginning (independent, identically distributed (i.i.d.)
random variables) through recent results on the theory for processes with bound-
aries, keeping to a very narrow path: continuous-time, discrete-state processes.
By developing only what we need for the applications we present, we try to keep
the theory to a manageable level, both in terms of length and in terms of difficulty.
We make no particular claim to originality of the theory presented herein, except
for the material concerning boundaries, which is the subject of Chapter 8. Most of
the trailblazing work of Freidlin and Wentzell [FW], and of Donsker and Varadhan
[DV1–DV4] goes further than we do. Also, others have subsequently treated the
general theory much more thoroughly; e.g. Ellis [Ell], Wentzell [Wen], Deuschel
and Stroock [DeS], Dembo and Zeitouni [DZ], and the recent work of Dupuis and
Ellis [DE2]. We have, however, formulated a complete, self-contained set of theo-
rems and proofs for jump Markov processes. Since our scope is limited to a class
of relatively simple processes, the theory is much more accessible, and less de-
manding mathematically. To enhance the pedagogical value of this work, we have
attempted to convey as much intuition as we could, and to keep the style friendly.
In addition, we present for the first time a complete theory for processes with a
flat boundary, and for some processes in a random environment. The level of the
book is somewhat uneven, as indicated in the dependence chart Figure 0.1. This is
purposeful—we believe that a neophyte would not want to read the difficult chap-
ters, and that an expert doesn’t want as much hand holding as a beginner.

We believe that our applications are important enough to require no apologies.
As Mark Kac said, “Theorems come and go, but an application is forever.” Our
applications cover large areas of the theory of communication networks: circuit-
switched transmission (Chapter 12), packet transmission (Chapter 13), multiple-
access channels (Chapter 14), and the 1 queue (Chapter 11). We cover as-
pects of parallel computation in a much more spotty fashion: basics of job allo-
cation (Chapter 9), rollback-based simulation (Chapter 10), and assorted priority
queuing models (Chapters 15 and 16) that may be used in performance models of
various computer architectures.

The key word in the phrase “our applications” is “our.” We present only our
own results concerning the applications. We do not synthesize existing theory ex-
cept in our narrow fashion for jump processes. We ignore possible improvements
in order to remain within the realm of those large deviations bounds that we actu-
ally use. For example, Anantharam’s beautiful results on the 1 queue [An]
are certainly relevant to the subjects we address, but his techniques are different.
We do not obtain the best results known for jump Markov processes. It is certainly
arguable whether this is a wise choice. However, we wanted to present a consis-
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Chapter 0. WHAT THIS BOOK IS, AND WHAT IT IS NOT

tent, fully worked out point of view, avoiding digressions. Furthermore, once a
student has learned the limited range of large deviations techniques we present,
he or she should find it a much simpler matter to read both more abstract and
complete works, and understand more wide-ranging applications. By limiting our
range, we are able to give complete proofs for nearly all the results concerning our
applications. We were also able to present a “bag of tricks” in the calculus of vari-
ations, which allows us to extract concrete information regarding these examples.
We try to remedy some of the narrowness of our point of view in the end notes to
the chapters and in the appendices.

On a less defensive note, we firmly believe that the large deviations of processes
should be taught first for jump Markov processes. Diffusions are complicated ob-
jects, and the student does not need the extra burden of a subtle process to hin-
der the understanding of large deviations. Discrete time presents another unnec-
essarily difficult process, because the jumps are usually more general than those
of the processes we consider. Furthermore, as we believe the book shows, there
are many interesting applications of jump Markov processes. After all, we live in
continuous time, and the events that occur in digital equipment are discrete.

As mentioned above, our book contains a new exposition of the theory of large
deviations for jump Markov processes, but does not contain any new theory except
for the results of §7.4 and Chapter 8. The applications contain many new results,
though, and new derivations of previously known work. The new results include:

A large deviations analysis of the 1 queue that includes a surprising
asymptotic formula for

0

as gets large, where is the queue size at time (§11.7).
Fully proved large deviations principle for jump Markov processes with a flat
boundary (Chapter 8).
Analysis of a new class of Markov processes, “finite levels,” for which both a
fluid limit theorem and a large deviations principle are proved (Chapter 8).
New analysis of an Aloha multiple-access protocol, using finite levels theory,
gives the quasi-stability region for instant-feedback, continuous time Aloha
(Chapter 14).
New results for Erlang’s model:

Transient analysis from any initial load (§12.5).
Transient analysis of a finite population model (§12.7.A).
Analysis of bulk service (large customers) (§12.7.B).
Transient analysis of trunk reservation (§12.8).

New results for the AMS model:
Analysis of bit-dropping models (§13.7).
Calculation of buffer asymptotics for the multiple class case (§13.8).
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Analyses of a simple priority queue (§15.1), “serve the longest queue” (§ 15.6),
and “join the shortest queue” (§15.10).
Simple analysis of the Flatto-Hahn-Wright queueing system (Chapter 16).

Figure 0.1. Dependence between the chapters.
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0.1. What to Do with this Book

0.2. About the Format of the Book

This book can be used as a basis for two types of one-semester courses. The first is
an introduction to the theory of large deviations, through jump Markov processes.
This course should cover most of Chapters 1, 2, 5, 6, Appendix D, and possibly the
advanced material in Chapter 8. Such a course would prepare the student to read
the more mathematical theory, and to fully appreciate the applications worked out
in the rest of the book. It would be wise (in our opinion) to sprinkle such a theory-
oriented course with some of the applications.

The second course is application-oriented. Such a course should probably start
with Chapter 1 (at least §1.1–1.3), so that some flavor of the theory is provided.
The results of §1.4, 2.1, and 2.3, and of Chapters 5–8 can then be stated without
proof, with or without intuitive explanations. Some basic tools from the calculus
of variations, at least to the extent summarized in Appendix C, should be covered.
Then applications can be presented, according to the dependence chart shown in
Figure 0.1.

Chapter 3 provides an easy application of the basic theory, and can thus be used
to motivate the more general (and more technical) process-level theory. Chapter 4
summarizes some basic results concerning the Poisson process, and more gener-
ally jump Markov processes. There is nothing new in that chapter, but it is a strict
prerequisite for the rest of the book. Finally, in the appendices we collect, for easy
reference, some background material from analysis and probability theory.

In our judgment, the prerequisites for such courses (and for reading the book)
are probability and analysis at a level of first-year graduate courses for engineer-
ing students, or senior-level courses for students of mathematics. The applications
course can be done with much less background, provided the student is willing to
believe the material as summarized in the appendices. However, some mathemat-
ical maturity (even affinity) is required.

There are four types of exercises in the book. Some results that are easy to prove,
important but not central to our development are presented as exercises. In some
cases, extensions are relegated to an exercise when they are deemed not-too-hard
but long; this is simply to save space. Examples and special cases are given as ex-
ercises, and are intended to help build intuition, or clarify a technical point. These
exercises are an integral part of the text, and should at least be read, preferably
solved. The last type of exercises are marked JFF (“just for fun”). The end of an
Exercise is marked thus:

There are two counters in the book: one for equations, one for all theorems,
propositions, lemmas and corollaries, exercises, examples, figures, assumptions,
and definitions. Equation numbers are written as (Chapter-Number.Equation-
Number), and other numbers as Chapter-Number.Number. References appear in
square brackets [ ], and we use either the first two letters of the author’s last name,
or—in the case of multiple authors—all initials. Conflicts are resolved creatively.
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We often wish to make a comment, or expand on a particular topic, in such a way
that the reader may feel free to skip the comment, but will know that it is there.
This is how we do it: in small type, in a narrow paragraph.

The index identifies definitions by bold page numbers, and includes the fre-
quently used symbols.

This project spanned many more years than we had ever anticipated. In the course
of those years we have had help from many, many people. Preeminent among
them are Armand Makowski, Debasis Mitra, and S.R.S. Varadhan. Debasis was
steadfast in his support: moral, financial, and technical. He believed in us when
we weren’t sure we believed in ourselves. This project would never have been
done without him. And we would never have gotten into the field (it is not cer-
tain that there would be much of a field to get into!) without Professor Varadhan.
It was a tremendous comfort to know that there was no technical point, however
difficult or subtle, that could not be answered almost instantly by a simple visit to
NYU. Armand Makowski not only introduced us, and not only is he responsible
for stating that the world would benefit from lecture notes on queueing applica-
tions of large deviations, but he can also be held accountable for doing something
about it. With the support of John Baras, Armand arranged a sabbatical at the Sys-
tems Research Center where a first draft of these notes was hammered out by AW,
and provided a sabbatical at the Systems Research Center where, somewhat un-
expectedly, most of the time of AS was devoted to this project.

There are many more people who have helped over the years. Robert J. Van-
derbei was, for a time, a coauthor of the book, and one appendix still bears his
sole authorship. Several “field tests” of these ideas were graciously hosted by
Armand Makowski at the University of Maryland, College Park, by Elja Arjas
and the Finnish Summer School, and by Sid Browne and the Columbia Business
School and Department of Mathematics. Within Bell Labs and the Technion, our
home institutions, it seems that nearly everyone had something to contribute. No-
table among those were co-large deviants Ofer Zeitouni and Amir Dembo. Also,
Marty Reiman was a constant source of technical wisdom, moral support (what
do you mean you aren’t done yet?), and was an invaluable asset in transportation
and living accommodations. Howard Trickey was our accessible TEX wizard, and
justified his title hands down. Thanks also to Andrew Trevorrow for long-distance
TEX help.

There were many students and colleagues who gave suggestions and feedback
on everything from typos to approach, from early drafts to the first printing of this
book. They include also those attending several courses given at the Technion,
as well as lectures delivered at AT&T. We are particularly grateful for comments
from Laurence Baxter, Henri Casanova, Hong Chen, Bill Cleveland, Ed Coffman,
Amir Dembo, Amanda Galtman, Leo Flatto, Ben Fox, Predrag Jelenkovic, Ariel
Landau, Armand Makowski, Colin Mallows, Bill Massey, Jim Mazo, Debasis
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Mitra, Marty Reiman, Emre Telatar, Stephen R.E. Turner, Yashan Wang, Phil
Whiting, Ward Whitt, Paul Wright, Aaron Wyner, Ofer Zeitouni, and Li Zhang.

The editor-in-chief of this series Laurence Baxter did yeoman’s work. Our edi-
tor John Kimmel amazed us by answering “yes” to every one of our requests, and
promptly, too!

Typists Sue Pope and Lesley Price helped turn scribbled handwriting into beau-
tiful TEX, quickly, accurately, and cheerfully.

This book was produced using TEX, with AS serving as local TEXpert, and was
set in Times Roman, with MathTimes and other math fonts from Y&Y. The figures
were drawn by AW using Canvas c , and according to the egalitarian tendencies
of the authors, was set on Macintosh c , UNIX c , and various PC computers and
clones.

I (AS) am delighted for this opportunity to acknowledge Armand Makowski for
his role as colleague, collaborator, and catalyst in my professional life and, above
all, to express my appreciation for his friendship.

And I (AW) am eternally grateful for my two mentors, Debasis Mitra and Raghu
Varadhan. These two fine men have unselfishly nurtured me throughout this and
other projects. I hope that in some way they can find some recompense in this
volume.

Finally, our families, particularly our wives Shuli Cohen Shwartz and Judy
Weiss, deserve thanks for putting up with us during all these years of labor. While
we’ll never know, it was probably as hard on them as having children; it was cer-
tainly longer and with less reward at the end. We promise we’ll never do it again.

Note: This printing incorporates all the corrections we accumulated during the
first year the book was out. We thank our readers for reporting these mistakes, and
our publisher for allowing us to make the changes. However, from the number of
mistakes found so far, we know that more will be found. Please send comments to
us at apdoo@research.bell-labs.com or adam@ee.technion.ac.il. You can obtain
the latest errata sheet at any of the following locations:

http://cm.bell-labs.com/who/apdoo
http://www-ee.technion.ac.il/~adam
http://users.aol.com/apdoo





9

+ +

+ +

E

P

P

P

P

( )

( )

/

( )

( )

( )

1 2

1
1

1

1 1

1

1

1 1

1

n

n

jk j k

n

n

jk j k

k
n k

1.1. Heuristics and Motivation

, , . . .

>
>

.

. . . , . . . , ( / ) ,

. . . , . . . , ( / )

( ( . . . ))

θ

Chapter 1

Large Deviations of Random Variables
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This chapter can be viewed as a guided tour through basic large deviations. Fol-
lowing a heuristic exposition, we derive large deviations estimates for random
variables. We provide proofs when these provide insight, or are typical; other-
wise, we provide references. The modern tools and approaches, especially those
that have proved useful for the applications, are discussed in Chapter 2 and Ap-
pendix D.

The main results, Theorems 1.5, 1.10, and 1.22, as well as the computations of
Examples 1.13–1.18 and Exercises 1.6, 1.17–1.25, will be used heavily through-
out the book.

Estimates of probabilities of rare events turn out to have an exponential form;
i.e., these probabilities decrease exponentially fast as a function of the asymp-
totic parameter. To motivate the exponential form of the large deviations esti-
mates, consider the following examples. Let be a sequence of indepen-
dent, identically distributed (i.i.d.) random variables with a common distribution
function and finite mean. Fix a number . Now the probability that

is clearly decreasing in in a long-term sense, since by the
(weak) law of large numbers

0 as

The next question would be: How fast does this probability decrease? Let us per-
form some quick calculations. First, if for some integer ,

for all 0 1

then clearly . Therefore

for all 0 1

by independence. This immediately implies that the rate of convergence is at most
exponential. On the other hand, for any positive , by Chebycheff’s inequality
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(Theorem A.113),

by independence. For the right choice of , this exponential expression is decreas-
ing:

Show that if 0 and if for all small, then
1 for some . Hint: compute at 0.

Thus, probabilities should decay exponentially in . The questions are: Do the
rates in the upper and lower bound agree, and if so, how do we compute the right
exponent? In §1.2 we show that they are indeed the same, and give a formula.
In §1.3 we compute several examples. Anticipating the shape of things to come,
the arguments indicate that

1 1

where the function depends on the distribution . For the meaning of see
Definition A.14.

Here is another view that some find quite intuitive. If, indeed, ,
then probably (for an illustration see Exercise 1.2 below).
Moreover, it is likely that this happens by nearly-equal splitting, i.e.,

2 and 2, with an error of order . (This
issue, of how improbable things happen, is explained in later chapters.)

Show that in the case of fair coin flips, if is the number of heads
obtained in flips and 0 8 is an integer,

0 8 0 8
1
3

as

and does not grow with ! Hint: .

Compare the chances of obtaining 1 2 heads in coin flips,
with 0 1 2 in the following two ways: (i) by getting two series of 2 flips,
each with 2 heads more than expected. (ii) by obtaining the additional heads in
one series of length 2 with the other series being “normal.” Hint: use Stirling’s
formula.
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These heuristics imply that, for large , we have the rough estimate

2 2

2

Similarly, for any much smaller than ,

If we could choose to be linear in , we would see that this probability decreases
exponentially fast. However, in general,

[for Bernoulli random variables with 1 2, the left-hand side is 1 2 while the
right is 1 2 !]. Thus the integer above cannot quite grow linearly with . This
indicates that indeed (1.1) is to be expected, and that the “error term” cannot
be omitted.

Let us now illustrate some of the ideas from a different angle. To avoid techni-
cal difficulties, assume that the distribution function satisfies 1 0, 2 1.
Let and log . Then

Let us estimate this expectation in a different way. Write

exp log log

exp
log log 1 2

By the strong law of large numbers,
log log

1

so that we expect to grow exponentially, roughly as . However,
by Jensen’s inequality (A.11),

!

Clearly, the law of large numbers is not precise enough to estimate this expec-
tation. Indeed, in this case we cannot expect convergence w.p.1 to imply conver-
gence in expectation, since we are taking expectations of something that may grow
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quickly. Here is a refinement that will consolidate the two calculations. Suppose
that, as in (1.1), we have an exponential estimate for the density of the sample
averages of the sequence log log

log log

for some non-negative function , and suppose that as .
Then

exp
log log

Suppose the maximum sup is attained at some point and write

By the assumptions on , diverges to as , so that it is
strictly negative outside a finite interval. Thus, the integrand in the last integral
goes to zero (exponentially fast) as , except where the maximum is at-
tained, so that

for all 0 and all large. By looking at the points where
we have

for every positive (this idea of estimating the rate of growth of an integral by
considering the maximum of the integrand is called Laplace’s method). We sum-
marize these two inequalities using the notation

exp sup 1 3

where the meaning of is that the left-hand side grows exponentially fast, with
rate sup . We will find in §2.2, as part of the derivation of large de-
viations estimates, that sup log , giving the correct exponential
growth rate.

But this is just a formal calculation, and you are probably asking yourself now,
“How can this be? I know that the mean is , and I’ve seen that the strong law of
large numbers implies that the mean is almost surely near , but how do I recon-
cile the two?” Let’s consider what would happen if you would actually try to run
an experiment to estimate . You would collect samples of the

, and then evaluate the product. You would undoubtedly (law of large numbers)
come up with a number in the range of . Repeat the experiment, and the results
would be similar. However, after a great many experiments, you would come up
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a a

a
a a a

x x
x

they all look like they are sampled from a “tilted distribution,” one
for which x

e e

The last example has more than purely theoretical or pedagogical interest; it has
monetary applications. Consider that investments usually pay an amount propor-
tional to the investment. Suppose that an investment is risky; to be precise, an in-
vestment of one unit at the beginning of the period yields units at the end of
the period [which is the beginning of the 1 period]. Hence, after periods,
the value of a unit investment made at the beginning of the first period is .

How should we value an investment? This is a complicated question, but we
have just seen that the return after a large number of periods is to be
near exp log , not near . Optimal investment strategies are based
on this and related observations. See Kelly [KeJ], Algoet and Cover [AC], and
references therein.

with an unusually large observation—say something near . This observation
is so large relative to the others that it completely dominates the mean you have
been keeping, so that all of a sudden the mean looks like even though only one
observation was of that order. Now what keeps an even more colossal observation
from skewing further the observed mean? The answer is that it is too improbable
for it to happen often [remember grows quickly with ]. It will happen so
rarely, that enough observations have been taken to completely dilute the effect
of the “extra large” observation. This is the tradeoff we see between (“the
probability”) and (“the size”), and is the reason that sup is the im-
portant quantity. It also serves to demonstrate that, sometimes, rare events are the
most important to determine what’s going on.

Sanov’s Theorem, introduced in §2.4, takes us one step up to “Level 2 Large De-
viations.” The question we ask there is: What do the random variables
look like when they do make a big excursion (such as making )? It
turns out that

log log . In other words, the product becomes large because of
conspiracies, because of outliers. This conspiracy is a very rare occurrence,
but when it occurs, its effect is huge. This is captured by the balance between the
size of the effect , and the rarity . Whereas in §1.1 we ask “How likely
is it for the sample mean to deviate from the ensemble mean?,” Sanov’s Theorem
addresses the question “How likely is it for the empirical distribution to deviate
from the true distribution?” But let us establish first things first.
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Consider the sequence of i.i.d. random variables. For
every and positive integer ,

e

x x
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a e M a M b
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M logarithmic moment generating function cumulant gen-

erating function x

M

M M

a e

x x
a x n

x x na e a

Chernoff’s Theorem establishes (1.1) for i.i.d. random variables. The proof con-
sists of an upper bound and a lower bound. The upper bound is just a parame-
terized version of Chebycheff’s inequality (A.9) applied to the function . The
lower bound uses a change of measure argument much as in importance sampling.
These ideas generalize to random vectors and to processes, and will be used in all
our large deviations proofs.

So, consider a sequence of i.i.d. random variables with common dis-
tribution function , and assume the mean exists. Define

1 4

log inf sup log 1 4

is the of the random variable . The function
log is called the or

of . Note that is non-negative [put 0 in (1.4 b)] and
convex (by Theorem A.47, being the supremum of linear, hence convex func-
tions); see Proposition 5.10, §5.2. The transformation applied to log in (1.4b)
is variously called the convex transform, Fenchel transform, Legendre transform,
or Cramér transform.

Figure 1.4. The -function: computing the Legendre transform.

By Exercise A.92, if the supremum in (1.4) is attained at a point in the interior
of the interval where is finite, then is differentiable at , so that

log 1 5

1 6
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Assume that for in some neighborhood of and that (1.5) holds for
some in the interior of that neighborhood. Then for every there exists
an integer such that whenever ,

Equations (1.6a)–(1.6b) imply that

0
0

1 6

1 6

This result holds, in fact, for i.i.d. random variables without any as-
sumptions. The general case is proved using an approximation argument; see,
e.g., Chernoff [Ch], Dembo and Zeitouni [DZ §2.2] and Theorem 1.10 below.

. By virtue of Exercise 1.6 below, it suffices to establish the result when
0. The upper bound is proved using an exponential estimate. First fix

0.

is increasing

Chebycheff

independence.

Equality in the first relation holds whenever 0. Since 0 was arbitrary,
taking the infimum would yield (1.6a) provided we show that we can ignore neg-
ative values of in (1.4b).

By Jensen’s inequality,

1

for all . Thus, since 0,

1 for 0

with equality for 0. Therefore in computing the middle term of (1.4), we can
restrict the range of the infimum to 0, i.e.,

inf inf

This completes the proof of the upper bound (1.6a).
The lower bound is established using a change of measure (if you are unfamiliar

with the idea of a change of measure, see §A.4). Let be the distribution of .
Then , defined by

1 7
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is a new distribution function (check!) ( is the tilted distribution referred to at
the end of §1.1). For any real , we clearly have

[ ]

[ ]

[ ]

by the definition of . Applying this idea to the left-hand side of (1.6b),

[ ]

[ ]

Changing to the measure , we have, for any 0,
1 8

[ ]

[ ]

[ ]

Let be i.i.d. random variables, distributed according to . Then the
probability in the first expression of (1.8a) is bounded below by

1 8
We now provide a lower bound for the probability on the right of (1.8b). First,
since is finite in a neighborhood of , it is differentiable there by Exer-
cise A.92. Therefore

1 2

and, in particular,
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Exercise 1.6.

Exercise 1.7.

Exercise 1.8.
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Since inf and it is differentiable, the derivative vanishes
at , so that

0 or

This implies that the change of measure puts the mean of exactly at since

Consider the sum in (1.8b) of the i.i.d. random variables . Since these
random variables have mean and finite variance, the central limit theorem A.112
implies

1
0

1
2

as

Let be such that the probability exceeds 1 4 whenever (clearly de-
pends on ). Then for ,

1
4
1
4

Now since 0 (why?) we can choose so that 1 4 when-
ever . This proves (1.6b–1.6c).

Let for each 1, where is a fixed constant. Express
the moment generating function and the Cramér transform of its logarithm
in terms of and . Write Theorem 1.5 for and conclude that the
zero-mean assumption on is without loss of generality.

Assume is continuous, and re-derive the lower bound without
invoking the central limit theorem. Hint: use the law of large numbers.

Let be independent (but not necessarily identically dis-
tributed!) random variables so that for all and , for
some 0. Then there exists a continuous function , which depends only
on , so that for all 0 we have 0 and
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Assume for in some neighborhood of zero. Then,
for every open set and positive integer ,

ε
( ε)

θ
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ε, θ ε θ
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Hint: compute separately for the case that the sum is larger than and smaller
than , and start with the zero-mean case. Use Chebycheff’s inequality as
in the proof of Theorem 1.5. Prove is finite for all small, uniformly in
. Use Exercise A.92 to conclude that the functions have

continuous derivatives (of all orders!) near 0 0 . Now use a Taylor
expansion in the two variables to second order and set . Obtain a bound
of the form 1 with 0 that holds for small .

To compute for , note from (1.4)
that the -function for the sequence is equal to the -function of

with the sign of its argument reversed, so that, for 0, by Chernoff’s
Theorem,

A more detailed statement of a large deviations theorem in and under weaker
conditions is given in Theorem 1.10 below.

Theorem 1.5 gives us an estimate of the probability that the sample mean lies
in the half-line above , and the remark extends this to the half-line below

. This easily extends to more general sets. Define the real-valued function
on sets in by

inf

Note that such a result is not possible for closed sets: in particular, single points
are closed sets, and if possesses a density, then the probability that the sample
mean is in the set is zero.

For a proof of this corollary see Dembo and Zeitouni [DZ]. Here is a heuristic
argument (when 0). An application of Jensen’s inequality (to the convex
function log : use the definition of with fixed) shows that 0 0, and
since is non-negative, 0 0. Thus the result is just the weak law of large
numbers if 0 . Now is non-negative and convex, so that it is in-
creasing for 0 and decreasing for 0. But then there is a point, say , in
the closure of so that . Since is open, there is an interval in
whose endpoint is . The argument of the lower bound now applies, since (1.8)
uses only a small interval, so that the same lower bound holds for all open sets for
which is a minimum point. For the upper bound, enclose by the two smallest
semi-infinite intervals ] and [ and apply Theorem 1.5.

Actually, this discussion is generic in that lower bounds are usually proved lo-
cally, while upper bounds are established by increasing the sets.
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1.3. Examples—I.I.D. Random Variables

, , . . . "

"( )

"( ).

"

, , . . .

(θ)
π

"( ) (θ θ )
>

( ) .

( ) ( )

π
.

,

( )
π

,

Theorem 1.10.

Example 1.11: Normal random variables.
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Let be i.i.d. random variables. Then the function de-
fined in (1.4) is convex and lower semicontinuous. For any closed set ,

and for any open set ,

The one-dimensional case is unique in that the upper bound holds for open sets.
The typical large deviations statement consists of an upper bound for closed sets
and a lower bound for open sets. Here is the best result for i.i.d. random variables,
stated in generic large deviations form. For a proof, see [DZ §2.2].

lim sup
1

log inf

lim inf
1

log inf

Note that no conditions, not even existence of the mean, are required.

In some cases, notably exponential families, the function of (1.4b) can be cal-
culated explicitly (see, e.g., [MN]). We now present some simple calculations in
order to develop a feeling for the scope of the large deviations estimates.

Let be standard normal
random variables. Then

1
2

by completing the square in the exponent, so that sup .
Thus Chernoff’s Theorem states that, for any 0,

In this case, we can also perform a direct calculation: is a normal
random variable distributed as , so

1
2

Using an estimate of this integral [Mc, p. 5],

1 1

we obtain
1

2
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Example 1.13: Poisson randomvariables.
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which is in agreement with the exponential order of the large deviations estimates.
The fact that 1 appears is also generic, as will be seen in the sequel.

Figure 1.12. The rate function for Standard Normal random variables.

Let be Poisson with mean . Then
, and for 0, log . Thus

log 1

and 0 , for 0, with in the last two cases. Thus
Chernoff’s Theorem implies, for ,

Let us compare this with a direct estimate. Since is a Poisson random
variable with mean ,

! !

2
1

2

using Stirling’s formula, and the factor 1 appears again.
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Example 1.15: Bernoulli random variables.
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Figure 1.14. The rate function for Standard Poisson random variables.

Let take values zero and one
with probability 1 2. Then 1 . When 1, straightfor-
ward calculus shows that log log 1 , so that in this range

log log 1 log 1 log 2 1 9

Chernoff’s Theorem thus implies that, for 1 2 1,

2 1

We can obtain an estimate in a direct way, by approximating the binomial coeffi-
cient using Stirling’s formula:

2
!

! !
2

2 2

2 2 1 1

2 1 2 1

The formula for immediately implies that whenever 0 or 1,
and 0 1 log 2, with in all these cases. Chernoff’s Theorem
tells us that 0 whenever 1. For, 1
the theorem implies , which is quite close to

the exact probability .
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Exercise 1.17.

Example 1.18: Exponential random variables.

Exercise 1.20.

Figure 1.16. The rate function for Bernoulli-1 2 random variables.

For Bernoulli random variables with 1 ,

log 1 log
1
1

Let be exponential random
variables with mean 1. Then 1 1 for 1 and is infinite otherwise.
Therefore 1 whenever 1 and then

1 log

Chernoff’s Theorem states that for 1,

Figure 1.19. The rate function for Exponential random variables, rate one.

For exponential random variables with parameter (mean 1 ),
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1.4. I.I.D. Random Vectors

Exercise 1.21.

Theorem 1.22.
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Assume for all . Then, for every closed set and
, there exists an integer such that, whenever ,

and for every open set and , there exists an integer such that, whenever
,

Interpret this as a time change.

From the examples, the following should be expected.
Let be the constant that is the greatest lower bound for a random

variable ; that is, 0 and 0 for all 0. Then
for . Moreover, if and only if 0. Hint:

take 0, use dominated convergence, then extend by Exercise 1.6.

Large deviations in are much more complex than in . The main reason for
this is that open and closed sets are more complex. Fortunately, these results are
not needed in the development of our theory. Sticking to our principle of proving
just what we need, let us state a reasonable large deviations result, and provide
rough intuition about a way a proof might go. A modern approach to this problem
is discussed in §2.1.

Consider the -valued i.i.d. random vectors with (vector) mean 0.
Now let and define (see Example A.8 for the notation)

1 10

log inf sup log 1 10

Define as in Corollary 1.9, but for sets in . That is,

inf 1 11

0

1 12

0

1 12

The proof of this theorem in is much more involved than in . Further-
more, the “weakest assumptions” possible in are much more restrictive than
in . See, for example, §D.1, [DZ] and the remarks in §1.5 below. Although
modern proofs rely on the technique of §D.1, we outline the extension of the one-
dimensional arguments to .
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The lower bound in was based on estimating the probability of the sample
mean being in a small interval around the point where is smallest. A similar
argument works in the -dimensional case: we need to consider small neighbor-
hoods, or balls, around the minimizing point.

Generalize Exercise 1.7 to .

For the upper bound, consider half-spaces of the form :
for some and 0. Then are i.i.d. and

Assume is continuous and finite. Prove the upper bound for con-
vex sets in . Extend the proof to finite unions of convex sets. Hint: use Cher-
noff’s Theorem for . Note that is convex as explained below (1.4) so
that : is convex, and has empty intersection with .
Therefore there is a half-space containing that does not intersect .

The following calculation will be used for our Poisson processes. It follows
from (1.10)–(1.12).

Suppose are i.i.d. with . Define

Show that defined in (1.10b) has the form

sup 1 13

where log is given by

1 1 14

Consequently, Exercise 1.24 implies that

lim lim
1

log
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One-dimensional caveats

require

contraction principle

While the one-dimensional case is simple enough to make the ideas clear, it can
(for the same reason) lull the reader into unwarranted carelessness. We conclude
this chapter by identifying some potential pitfalls, and then discussing related
works and possible extensions.

The reader should be aware of several delicate points. Some of these are discussed
in Chapter 2 and Appendix D.
1. Properties of the rate function.

a. Convexity. The calculations in Chapter 1 show that rate functions for random
vectors are convex. This (unfortunately) does not extend to rate functions for
processes, as will be seen in Chapter 5.

b. Semicontinuity. The calculations in Chapter 1 show that rate functions are
lower semicontinuous. Recall that this means that lim inf
so that can only jump down. When we formulate, in §2.1, the “axiomatic”
large deviations principle, we shall that rate functions be lower semi-
continuous. There are several reasons for this restriction. Under this con-
dition there is a convenient, equivalent formulation of the upper bound (see
Lemma 2.11), and it guarantees uniqueness of the rate function (§2.1). This
condition also makes the upper bound for closed sets particularly easy to
prove. In addition, it implies that if a rate function is strictly positive at every
point of a compact set, then the probability of that set decays exponentially
fast (lower semicontinuous functions attain their minimum on compact sets).

c. Compact level sets. The examples in Chapter 1 show that possesses com-
pact level sets, i.e., the sets

:

are closed and bounded for each , if and only if the probability that the ran-
dom variable actually takes its smallest possible value is zero: Exercise 1.21.
In particular, these sets are closed, which implies lower semicontinuity—see
Definition A.28 and Exercise A.29. The compactness condition is necessary
in order to establish the important (§2.3). This is illus-
trated further in §2.3. In Chapter 7 we provide an example of a non-negative
birth-death process with constant drift ( 1) for 0, but with the cost (in
terms of the rate function) of going from 0 to being finite. It is easy to
show that the process will explode (transition to infinity) if allowed to run
for a long enough (finite) time.

2. Difficulties in higher dimensions. In one dimension, the use of Chernoff’s The-
orem for semi-infinite sets actually provides enough control to estimate the
probability that
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Extensions and relations to other methodologies.

is in a fairly arbitrary set. In higher dimensions, it is more complicated to es-
timate this probability, because the topology is more complicated. Thus we
need stronger assumptions in when 2.

3. Difficulties of processes, as opposed to finite dimension. Processes can be
viewed, if you are so inclined, as random variables with values in some (in-
finite dimensional) space of functions. The topology that troubled us in is
simple compared to the topology in function spaces. In this book we restrict
our attention to particularly simple processes: jump Markov processes, where
the topology is well understood. This topology is discussed in §A.1.

Extensions and generalizations of the results of Chapter 1 are discussed in Chapter
2 and Appendix D. Let us now mention briefly some extensions that will not be
touched upon.

The only type of large deviations estimate we obtain in this book is on the order
of

This is only the first term in an asymptotic expansion, though. Using formal meth-
ods such as WKB expansions, one finds [Ol] that the series usually continues as
follows:

1

where is the number of dimensions of the process in question. There are a few
cases where the full asymptotic expansion has been worked out, and there are
many more cases where some terms have been calculated.
a. Formal expansions of singular equations (e.g., WKB methods). Several inves-

tigators, notably Knessl, Matkowski, Morrison, Schuss, and Tier [KMS, Mo1,
Mo2] have calculated quite accurate and explicit asymptotic expressions for
various large deviations problems using formal expansions. The main criti-
cism of these techniques (there are several that are employed) is that there is no
proof of their validity; in contrast, the student will note that in the present book,
about 50% of the pages are devoted to proving the validity of the methods we
employ. Martin Day provides rigorous proofs for the validity, in some cases, of
formulae obtained by formal methods of the WKB type; see e.g., [D2]. Formal
methods often give more terms in the asymptotic series than the “rough” meth-
ods we employ. They do not usually give sample path information, though,
such as we obtain in Chapter 16.

b. Central limit expansions and moderate deviations. The quantities we estimate
are generalizations of
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compared to the central limit quantity

Clearly there is room to investigate the quantities

for 0 1 2. Some of these questions have been approached by Ibragimov
and Linnik [IL] and there has been a good deal of activity since then, for both
random variables and processes. See, e.g., [DZ, § 3.7].

c. Spectral methods. Many of the applications we analyze may also be examined
using spectral methods. For example, the AMS model (Chapter 13) has been
investigated by A. Elwalid, D. Mitra, and T. Stern [EMS] among others. Some
of the calculations we do are provably equivalent to calculations done on the
spectrum; see, e.g., [C1].

d. Calculus of variations methods, optimal control. You can view our approach
to probability problems as a method for turning them into problems in the cal-
culus of variations; hence, anything you know about such problems is related
to our methods. The type of variational problems arising here also appear in
optimal control: of course optimal control and variational problems are them-
selves inextricably linked, e.g. [Yo, Ce]. In addition, there are several prob-
lems in recursive estimation theory, cf. [DK1, DK2], that can be solved via
large deviations techniques.

e. Viscosity solutions. Variational problems can often be solved in terms of PDEs
(partial differential equations). One of the technical problems that arises is
smoothness of solutions. The so-called viscosity solutions turn out to be the
correct object (in terms of the degree of smoothness) for many variational
problems. Using this concept one can sometimes prove that formal calcula-
tions are correct, at least to first order. Barles, Evans, and Souganidis [BES]
and Dupuis, Ishii, and Soner [DIS] have used viscosity techniques to prove
large deviations principles for certain classes of systems. Reference [DIS] is
notable because it proves the principle for the very important case of Jackson
networks. In addition, viscosity solutions naturally lead to methods of solv-
ing PDEs (and hence variational problems) via successive approximations—a
procedure that can facilitate the numerical solution of some large deviations
problems.

f. Entropy. Entropy and large deviations are intimately related. We have deliber-
ately avoided this relationship, but others have exploited it to good effect. Ellis
[Ell] goes into great detail, proving results on the Ising model among others.
All of information theory is based on Chernoff-type estimates; see, for exam-
ple, Bucklew’s book [Bu]. Donsker and Varadhan [DV3] showed how opti-
mal change of measure can be calculated via entropy in a very general Markov
process setting. Kullback-Leibler information can be viewed as a large devi-



28 Chapter 1. LARGE DEVIATIONS OF RANDOM VARIABLES

ations quantity. Again, the reasons we avoid this fruitful subject are lack of
time, space, and our choice of applications.

g. Importance sampling. Importance sampling is, in essence, the use of change
of measure to improve the accuracy of statistical estimates. It is increasingly
important in the simulation of rare events. Our approach to the large deviations
lower bound is equivalent to choosing an optimal importance sampling scheme
among a class of changed measures. For more details, see [CFM, Bu].

h. Feynman path integrals. The Feynman-Kac formula can be viewed as showing
that the exponential martingale we use is indeed a martingale. In other words,
our method for proving upper bounds is based on the reasoning behind Feyn-
man path integrals. For a more direct (but, so far as we know, unproven) con-
nection, see Gunther [Gu]. See also Brydges and Maya [BrM].

i. Steepest descent methods. The first large deviations calculations were made by
steepest descent methods. It is a natural method, since the transforms (Laplace
or Fourier) of sums of independent random variables are simply powers, and
steepest descent is then quite accurate for computing the inverse transform.



R

29

d

n
n n

1 2

1 2

F
X

X
X

X X Y

X

X

=
=

≥
→

→ ∞ ≥

{ ≤ }

Definition 2.1.

(!, ) , , . . .

,

( )

, , . . .
( ) ( )

( )

z z

C T

I

I x
I y y y y
n I y I y

x I x a a I
I

Chapter 2

General Principles

2.1. The Large Deviations Principle

A real valued function on is called a “rate function” if it sat-
isfies the following two requirements.
(i) ,
(ii) is lower semicontinuous. That is, if is a sequence so that
in as , then .

(iii) If in addition the set is compact for every real (in short—
has compact level sets), then is called a “good rate function.”

This chapter contains the definition of the large deviations principle, as well as a
few standard introductory results. Varadhan’s integral lemma and Sanov’s theo-
rem are standard tools of the large deviationist. However, in the remainder of the
book we use only the results of §2.1 and, in Chapter 11, of §2.3.

The general theory of large deviations has a beautiful and powerful formulation
due to Varadhan, called the “large deviations principle.” The axiomatic nature of
this formulation makes it very general, with a drawback in that its meaning is not
apparent at first glance. With Chernoff’s Theorem snugly under our belts, though,
we can appreciate the meaning of the “large deviations principle,” and then indi-
cate how it may be used in more general frameworks such as Level II large devi-
ations (see §2.4).
The formal statement is given in terms of measures, but do not be alarmed; we

shall proceed in steps. First we shall paraphrase the large deviations principle in
the language of random variables. Note that we make no substantial assumptions
as to the range of these random variables, their distributions, or their dependen-
cies.
Start with a probability space , and some random vectors with

values in some space . The only requirement on their range we need here is that
the definitions below make sense. (They certainly do if , and more gen-
eral cases include [0 ], the space of continuous functions. In §2.4 we
work with a space of probability measures.) However, to avoid having to keep
track of the requirements on , assume for the rest of this chapter that (and
below) are complete separable metric spaces (Definition A.18). For a more ab-
stract setting, see [DZ].

0

lim inf

:
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closed

We say that satisfies a large deviations principle with
rate function if, for every closed set , we have

and for every open set , we have

1. We allow .
2. Part 2.1 (ii) is equivalent to the requirement that the set : is
closed for every real (Definition A.28 and Exercise A.29). It means that
the values can only jump down, so that attains its minimum in any compact
set. If is a good rate function, then it attains its minimum in any set
(why?).

3. The terminology “good rate function” is due to Stroock [St]. Note that the
distinction between “rate function” and “good rate function” is not standard.
In some publications the definition of rate function is taken to imply “good-
ness.”

The function [defined in (1.4) or (1.10)] is a rate function; it is non-negative
[put 0 in (1.4b), (1.10b)] and lower semicontinuous (by a direct application
of Fatou’s Lemma—Theorem A.93). If lim then it is a good
rate function, for in this case the level sets are bounded, and are closed by lower-
semicontinuity.
In Chernoff’s Theorem 1.5, 1.10, and in 1.22 we considered the random vari-

ables . Keeping this theorem in mind, here is a formal
statement of the “large deviations principle.”

lim sup
1
log inf 2 1

lim inf
1
log inf 2 1

Let us see how this relates to Chernoff’s Theorem. The bounds (1.6) in Cher-
noff’s Theorem 1.5 (or 1.10) correspond to (2.1), with playing the role of the
function. It states that (asymptotically) bounds for the probability that is in

some set is determined by the minimal value the function takes on that set. More
precisely, the exponential order of decay of this probability is bounded below by
the worst point estimate of on the set. That is indeed a rate function is also
established in Chapter 1.
Thus we can restate Theorems 1.5, 1.10, and 1.22 in terms of Definition 2.2 as

follows. If for in some neighborhood of 0, then where
satisfies a large deviations principle with rate function

of (1.10).
Here are some immediate consequences of the definitions.

Let be a rate function satisfying (2.1). Then inf 0
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Let be a closed set and define

inf and : 2 2

If is a good rate function, then is not empty, so that the minimum is
attained in . Therefore, if 0 for all in , then 0, so that the
probability of this set decays exponentially fast.

There is at most one rate function satisfying (2.1). That is, the
rate function (if it exists) is unique. Hint: assume for some point

. By lower semicontinuity you can find a closed ball around and a positive
so that for all in that ball. Now use (2.1).

Why the two separate statements for closed and open sets? Or, why separate
upper and lower bounds? It is easy to see that the lower bound cannot hold for
a general closed set, since it may be too small. Take a sequence of
Bernoulli random variables (Example 1.15), and let 1 2 . Then

2 0, so that the left-hand side of
(2.1l) equals , but from (1.9), 1 2 ! On the other hand, for an
open set ,

lim sup
1

log lim sup
1

log

inf

Now, if is continuous (near the boundary of ), then inf inf , and the
upper bound holds for the open set. But in general may be only lower semicon-
tinuous, and a discontinuity on the boundary of may invalidate the upper bound.
This leads to the following definition.

inf inf

The following is an immediate consequence of Definitions 2.2 and 2.5.
If satisfies a large deviations principle with rate func-

tion and if is an -continuity set, then

lim
1

log inf

In general, “liminf” and “limsup” may be different, and a limit may not exist.
Let be i.i.d. Bernoulli 1 random variables and define

. Find a set that is not an -continuity set. Find a set
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Assume is a good rate function on a metric space . Let
be a closed set and define and by (2.2). Then for each , there is a
so that and for all in implies . If

satisfies a large deviations principle with rate function and if is an
-continuity set, then

for all

We say satisfies a large deviations principle with rate func-
tion if, for every closed set , we have

and for every open set , we have

so that log possesses no limit. Hint: for try an interval, for
a single point.

The large deviations principle and the variational formulation imply something
about the way rare events happen. If the variational problem has a unique optimal
point , then a point far from cannot be optimal. Therefore, rare events happen
by staying close to . Here is a precise statement.

0

. Assume first that contains exactly one point . For a proof by con-
tradiction, assume that there are points in with 2 but

. Since the set : 1 is compact, we can take
a convergent subsequence of with limit . Then since is closed,

so that , but, by lower semicontinuity, , con-
tradicting the definition of .

To establish the second claim note that from Bayes’ Rule,

2 3

The second inequality in (2.3) comes from the large deviations upper bound ap-
plied to the numerator, and the large deviations lower bound and Exercise 2.6 ap-
plied to the denominator. The proof for the case when is not a single point is
relegated to the exercise below.

Extend the proof above to the case that contains more than one
point.

We now give a formal statement of the large deviations principle in its standard,
abstract form. We are given a sequence of probability spaces , where
the are all measures on . In terms of Definition 2.2, is the “distribu-
tion” of . We are also given a rate function on .

lim sup
1

log inf 2 4
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2.2. Varadhan’s Integral Lemma

Lemma 2.11.

Theorem 2.12.

Proof
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Let be a rate function: then the upper and lower bounds in (2.1),
(2.4) are equivalent to the following. For any (measurable) set ,
(i) Upper bound: if

then

(ii) Lower bound: if , then

Therefore, (i)–(ii) is equivalent to Definition 2.2.

level sets

Suppose that satisfy the large deviations principle with
rate function . Then for any bounded continuous function on ,

lim inf
1
log inf 2 4

This reduces easily to Definition 2.2 if (cf. Definition A.81) and
. The advantage of the not-too-intuitive, abstract formula-

tion will become clear gradually, starting with the next section. We conclude this
section with another common formulation of the large deviations upper and lower
bounds. Implicit in our previous formulation was the fact that , the -field on
the probability space, contains a topology (so that the notion of lower semiconti-
nuity can be defined). This is not always possible (although it is in our case)—and
these considerations lead to the more general formulation below. For details and
a proof of Lemma 2.11, see [DZ].

:

lim sup
1
log

lim inf
1
log

The sets : are the of .

The following theorem, due to Varadhan, illustrates the power of the large devi-
ations principle. Indeed, this theorem (really a corollary of Definitions 2.2 and
2.10) is one of the main tools in the theory of large deviations.

lim
1
log sup 2 5

. We show that the right-hand side of (2.5) is both an upper bound and a
lower bound for the left-hand side. Let denote the probability measure on
associated with (the distribution of ); we shall invoke either of Defini-

tions 2.2 or 2.10 as convenient. First, we establish that (2.5) holds with re-
placing equality. For any fixed 0, we can find closed sets so that
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sup inf for 1 , and such that .
Then

exp sup

max exp sup

max exp sup
1
log

But since sup inf , we have from Definition 2.2

lim sup
1
log

lim sup
log

max sup
1
log

max sup inf

max sup

for any points in . But then

lim sup
1
log max sup

sup

Since was arbitrary, this proves the upper bound.

To obtain the result it remains to establish that (2.5) holds with replacing the
equality. This is even easier: let be a point such that sup

, and let be an open neighborhood of . We can take small enough



1

1

n

n

35

( ) ( ( ) δ)

θ
θ

E P

E

E

E

E
E

E E

( )

( )

∑

∏
∏

( )

∏

1 2

1

1
1 2

1
1

log

1 log

1

1

1

∈

→∞ →∞
−

∈

∈ ∈

∈

=

→∞

∗
∗ ∗

∗ ∗ ·

∗ ∗

→∞

Section 2.2. VARADHAN’S INTEGRAL LEMMA

| − |

≥

≥ − −

≥ + − −

≥ − −

=

= ≤ ≤
=

−
= −

=
= −

− = − · −

= − −
=

=

x U

n
ng z

n
n g y

n

x U

x U x U

x U

n

n

i
i

n
i

nz
i

n n
n

i
x i

x

i
d
dx

x
x

n

n

i

g x g y

n
e

n
e U

g y I x

g x I x

g x I x

x x

z
n

x

x e x
z z x

x I x x
I a a e

x I x x
x x I x

x I x x x e

x x x
x

n
x x

( ) ( ) < δ

( )

( ) δ ( )

( ) ( ) δ

( ( ) ( )) δ

δ

, , . . .

. ( . )

, , . . .
( ( ))

( ) (θ ( ))

( ) θ ( )
θ ( )

( ( ))

( )

( ).

( ).

so that sup so, invoking Definition 2.10,

lim inf
1
log lim inf

1
log

inf

sup sup 2

sup 2

and, since is arbitrary, the lower bound follows.

This theorem can be used without modification to examine the second exam-
ple of §1.1, namely the product (1.2) of random variables. Consider the sequence

of i.i.d. random variables from that example, and let

1
log 2 6

Then , and (since we were assuming that 1 2) we have that
is bounded. Hence Theorem 2.12 states that lim log

sup . Chernoff’s Theorem (for the random variables log ) tells us that
sup log (where the expectation is with respect to the

variables ). Let us now complete the calculation: from (C.6), .
Therefore 1 at any extremal point of , so that

sup 1 log

log
log

This proves the remarkable fact that

lim
1
log log

Well, even though we had to go on a long journey to get to this elementary result,
we hope you found it worthwhile.
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Let be a continuous function.
(i) If is a good rate function, then is a good rate function.
(ii) If satisfies a large deviations principle with a good rate function ,

then satisfies a large deviations principle with the good rate func-
tion .

Suppose is a sequence of random variables with values in a space .
For a continuous function on with values in a space , let . We
may be interested in a large deviations principle for , when such a prin-
ciple is easier to derive for . For example, if is a Markov pro-
cess, in general may not be. The contraction principle provides a tool to
establish the large deviations principle and compute the rate function of
from those of . Define

inf : if for some ;
otherwise. 2 7

In view of our applications, assume that and are somemetric spaces (although
the result holds for Hausdorff topological spaces [DZ §4.2.2]).

. is clearly non-negative. Due to the remark following Definition 2.1, to
establish (i) it suffices to show that for any arbitrary , the set : is
compact. Since is a good rate function, the set : is compact and
since is continuous, the image of that set,

: : 2 8

is compact (Theorem A.27). Now

: : and

But by Definition A.25, the set : is closed since is continuous.
Therefore

: :

is compact for every and . Since is lower semicontinuous, by Theorem A.31
it achieves its infimum on that compact set. Thus

: and some
: inf :

:

is compact, and (i) is established.
To establish (ii), let be a set in . By definition,

inf : inf :
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2.4. Empirical Measures: Sanov’s Theorem

Since is continuous, by Definition A.25 : is open (closed) if is
open (closed), and (ii) now follows from the definition of a large deviations prin-
ciple.

Note that to apply this result we need a good rate function: for example, take
the rate function 0 and the continuous function . Then is not a
rate function.
There are various refinements and extensions to this result: see, e.g., [AR, DZ,

FW, Va]. They relax the continuity assumption, and generalize to more abstract
spaces.
The contraction principle serves to “bring down” a large deviations principle

from amore complicated space to a simpler one. It is interesting that it is also pos-
sible to obtain the converse: for example, a large deviations principle for infinite-
dimensional spaces can be obtained by establishing the principle for every finite-
dimensional projection, together with some “compactness.” This is the method of
projective limits; see [DZ, DeS].

Chernoff’s Theorem is very useful in telling us how often certain rare events oc-
cur. Sanov’s Theorem tells us something amazing, and possibly more useful: it
tells us these events occur on the occasions when they do. It turns out that
with overwhelming probability, rare events happen only one way. This is a sort
of strong law of large numbers for rare events. In some situations this is intuitive.
Suppose we flip a fair coin 10,000 times and, oddly enough, obtain 8,000 heads.
How did this occur? It might have happened by having 2,000 tails in a row, then
8,000 heads; it might have happened by having 4,000 heads, then 2,000 tails, then
4,000 heads—there are many ways it could have happened. However, it should
be reasonably clear that the most likely way it happened is for the coin to act as
if its probability of coming up heads was .8 all along. In the first 100 tosses we
should have seen about 80 heads, and in the next 100 tosses also. This can be
made very precise in a number of ways, and Sanov’s Theorem is one of the ways.
In general, if an odd event happens, then the way it happens is for a “conspiracy”
to take place, and for all the observations to behave as if they were samples from
a “tilted” distribution.
There is a very close relationship between this theorem and the lower bound of

Chernoff’s Theorem. In the lower bound, we saw that the probability of a rare
event can be estimated by comparing a process with the tilted process. Since
estimates obtained this way are tight, we might suspect that something such as
Sanov’s Theorem should hold.
This section provides a first taste of “level 2 large deviations.” Its main purpose

is to introduce the concept of large deviations of empirical measures. We shall
present some notation, develop a feeling for such results, and even argue that they
might be useful. The general formulation of level 2 results is deferred until we
study Markov chains in Chapters 7 and 8.
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Let be i.i.d. random variables with distribution function and distri-
bution [i.e., ] ]. Let denote the empirical distribution of
the sample mean, and the corresponding empirical measure (Definition A.82).
For each , the law of large numbers (applied to the i.i.d. random variables
[ ]) yields as . (In fact, results on theKolmogorov-
Smirnov statistics show [Br §13.6] that 1 for all .) Now

i.e., the empirical mean is the mean of the empirical distribution (to see this, mul-
tiply both sides by and use induction on ). Define the set of probability
measures on (distributions) by

: 2 9

So, we can now make a simple statement look complicated:

2 10

The reason for doing so is that the latter formulation is much more general. For
example, assume that we have some measure of distance between probability
measures (let’s stay intuitive for a while; it is perhaps too early to consult §A.3).
Then we can ask how likely it is that , or try to estimate
for some fixed . It turns out that the answer can be given “explicitly” in terms of
the Radon-Nikodym derivatives (see Theorem A.117):

lim lim
1
log log 2 11

Moreover, we will show that for appropriate sets of measures, we obtain

lim
1
log inf log 2 12

If this reminds you of (1.11), it is no accident; as we shall illustrate below, the inte-
gral indeed plays the role of in (1.4). Sanov’s Theorem formalizes (2.12). Con-
sider the space of distributions on (or the associated probability measures;
see Theorem A.90). Define

log if the integral is well defined;

otherwise.
2 13

Note that depends on . In the terminology of information theory, is usually
denoted as and is called the (conditional) entropy of relative to .
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⊂
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⊂
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Consider the sequence . For every closed
set we have

and for every open set we have

µ , µ , . . .

(µ ) (ν) ( . )

(µ ) (ν). ( . )

, , . . .

( ) > , , < .

, . . . ,

( , , . . . , , , , . . . , ) , ( . )

( )
, , . . . , , . . .

( , . . . , )

.

( , . . . , )
( , . . . , ) . . .

(Sanov) [Sa]

lim sup
1
log inf 2 14

lim inf
1
log inf 2 14

For this to become a precise statement we need to define what we mean by
closed or open sets in the space of measures. This will be done in §A.1 and A.3.
In this section we shall restrict our attention to multinomial distributions. In this
case a simple and intuitive notion of distance of measures is available, so that we
can carry the calculations through. Moreover, these distributions (when scaled)
are dense, in some sense, in the space of distributions, so that we expect the re-
sults and formulae we derive to hold in general. Indeed, this was the way Sanov
originally proceeded. We shall proceed to illustrate (2.11), and develop intuition
by demonstrating the relation between Sanov’s Theorem and the large deviation
results in .
So, suppose is a sequence of i.i.d. random variables, with

0 1 1

Let denote the standard basis for ; that is,

0 0 0 1 0 0 2 15

where the one is in the position. We can now represent our random variables
by random vectors in as follows. Define

[ ]

that is, if , then has all components zero, except for a one in the
component. Note that is a representation of the empirical measure
of (cf. Definition A.82). Now is clearly a sequence of i.i.d.
random vectors, with , so that the strong law of large
numbers implies

lim
1

1

So, the large deviations question would be: given a distribution on 1 ,
i.e., a vector with positive components and with 1,
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what is

lim lim
1
log

1
?

From Theorem 1.22 for vectors in we would expect that

1
2 16

for all small enough, and that, moreover, 0 if and only if . Let us
show this and identify directly; we shall later see that, as mentioned above,
Sanov’s result (2.12) and Theorem 1.22 are equivalent. It will be convenient to
use the definition sup for in .
Note that the value of each component of is a multiple of 1 . As-

sume first that the components are multiples of 1 . Then

1 !
! ! !

and using Stirling’s formula

1
2

But since 1, we obtain

1

exp log

Since log log is a continuous function of , if is close to

and its components are multiples of 1 , we can approximate

by . Now the number of points that are possible values of

with is at most 2 (and at least one, for large enough).
So, summing over the 2 exp log log 2 possible events,

1
exp log log
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The first error term is due to the number of points in the -box, and the second to
the approximation of log by their values at the center of that box. This
establishes (2.16) and identifies for the set under consideration.
Sanov’s Theorem seems more powerful than Chernoff’s Theorem, since it

gives information about the entire empirical distribution, not just its mean. How-
ever, let us show that for multinomial random variables they are equivalent. To
derive Sanov’s Theorem, i.e., the form (2.13) of , recall that from Theorem 1.22,

1
log

1
sup log

where in this case,

Differentiating to obtain the maximizer, we obtain so that

log log

Hence Chernoff’s Theorem implies

1 1
log log log

log

which is Sanov’s Theorem. This works since the s have finite range; otherwise
wewould have an infinite-dimensional space to consider, and Chernoff’sTheorem
cannot be invoked.
The derivation of Chernoff’s Theorem from Sanov’s Theorem is quite general,

and applies also for abstract versions of Chernoff’s Theorem. With the notation
in (2.10) and (2.12) Sanov’s Theorem implies that

exp inf log

where is the distribution of . We will show that the right-hand side equals
exp , with defined in (1.4), which is Chernoff’s Theorem. Assume for
definiteness that and write . Then
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The first constraint simply means that is a probability measure, so that it inte-
grates to one, while the second constraint is that under , the mean is larger than
. Note that is non-negative, and equals zero only if , since by Jensen’s
inequality and the convexity of the function log ,

log log log 1 1 0

with equality only if 1. Alternatively, if exists, then since the
function log is convex,

log log log 0

Fix any satisfying the constraints in (2.17), but with . Our
first step is to show that cannot be aminimizer in (2.17), and that lower values for
are obtained by modifying to get equality. This implies that the last inequality

in (2.17) can be replaced by an equality. Note that the function 1 satisfies
the first two constraints, but not the third, since by assumption,

Hence, for any 0 1, the function 1 satisfies
the first two constraints. Now the function log is convex in (for 0), so
that expressed through (2.17) is convex in . By this convexity,

1 log 1

log 1 log

1 log

log

where the second relation holds since log 0 and the last since the last
expression is positive. Thus . On the other hand,
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x x x d x x x x d x

x x d x

x x d x x d x x x d x a

x

x x x x x d

x x x d

x x

x ce c

c e d x c e

c xe d x c x e a

d
d

x d x x x d x

c e x c d

a e d

a M

v( ) µ( )

αv ( ) ( α)v( ) µ( ) α ( α) v( ) µ( )

< v( ) µ( ).

α > v
v

λ , λ

v( ) v( ) µ( ) λ v( ) µ( ) λ v( ) µ( ) .

δ( ) v v εδ
ε ε

δ( ) v( ) ( λ )δ( ) λ δ( ) µ

v( ) ( λ ) λ δ( ) µ

δ

v( ) λ λ

v( ) , θ

µ( ) ,

µ( )

( . )

v

ν

µ
( ) ν( ) v( ) v( ) µ( )

(θ ) µ

θ µ

θ (θ).

, so that

1 1

Thus we can choose 0 so that satisfies the constraints. The conclusion is
that by changing so that the last constraint becomes an equality, we can improve
our minimization, and our first step is concluded.
To deal with our constrained minimization problem, introduce the Lagrange

multipliers . (For the idea of Lagrange multipliers, see [Ew pp. 111, 116
and 123]; but note that this reference considers only piecewise smooth functions.
For an application with proof, see §13.6.) We then look for extremals of

log 1

To that end, fix a function , change to , and differentiate with respect
to at 0, to obtain

log 1

log 1

0

over all positive functions . But this implies

log 1 0

or for some (i.e., the change of measure is exponential!). The
constraints imply that

1
2 18

so that for such we have

log log

log

log

log
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ν (ν) (ν) θ
(θ) θ

(θ) ,
θ

(θ) .

θ

θ
( (θ) θ) .

θ

( θ (θ)) ,

We conclude that any minimizing over must satisfy
log . However, the constraints also determine , for writing (2.18) in the no-
tation of the Chernoff bounds, we have

1

But this means that must satisfy

log 0

But this is exactly the one that appears in the Chernoff estimate

sup log

and the result is established.
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Chapter 3

Random Walks, Branching Processes

In this chapter we describe several processes, starting with the standard and simple
and proceeding to the less so. We introduce large deviations for processes. The
results of Chapter 1 are applied to analyze these processes. In particular, a slight
modification of the proof of the upper bound in Chernoff’s Theorem is used. Ap-
plications of the current results are presented in Chapter 10. The results of this
chapter are needed only for Chapter 10; however, they serve as a simple intro-
duction to large deviations for processes. The general derivation we provide in
Chapter 5 is far more involved.
A random walk, also called a drunkard’s walk, denotes the position of a drunk

person in a long narrow corridor. Starting from position he takes a step of size
at integer time . The step sizes are real valued and i.i.d. with distribution func-

tion . Fix some which is assumed independent of . If is finite,
then the law of large numbers implies that

with probability one as , so that on the average our drunkard in fact makes
progress, with speed . Large deviations will help us compute the probability
that he arrives at an unlikely position, i.e.,

for some . Theorem 1.5 gives estimates of this and related quantities.
Unlike previous results, we shall ask questions about the deviations of his whole
path from its mean. Specifically, we will compute

for all 0

This is a question about the behavior of the , not just the sample
mean. For this restricted problem, it turns out that Theorem 1.5 together with an
interesting observation suffice to prove this “process level” result. In general, we
will need to develop more delicate machinery. But first let us address this specific
problem.
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Suppose the real numbers satisfy . Let

In other words, is an integer such that the minimum is attained. Then

for all

If , then

for all

if and only if

Fix and define the function ( mod ) to have values between one and :
mod 1 .

arg inf : 1

1

Prove Lemma 3.1. Hint: draw a picture.

Now let be a sequence of i.i.d. random variables.

1 3 1

3 2

. Clearly,

for all 1 3 3

But Lemma 3.1 tells us that if , then for at least one (random)
we have

for all 1

So

for all 1

for all 1 and

3 4

for all 1

for all 1

since the sums in the next to last term are identically distributed. Equations (3.3)–
(3.4) yield the result.
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The condition (3.2) was the subject of §1.2. Theorem 3.3 holds without the
assumption (and in fact without assuming the existence of the mean) if
we replace by [ ; see (1.11), Corollary 1.9 and Theorem 1.10. For
a detailed analysis of random walks via large deviations methods, see [DZ §5.1]
and references therein.
To analyze the random walk, we need only to incorporate the starting position
. Let be i.i.d., and independent of , and write exp .

0
0 0

0

. Following the proof of the upper bound in Theorem (1.5), for 0,
for all 0

where 0 is such that is within of its maximum. This establishes the upper
bound. Now if 0 with probability one, then the left-hand side in Theorem 3.4
is zero, so that the estimate cannot hold. Otherwise, by the independence assump-
tion,

for all 0
0 for all 1

by Theorem 3.3.

For the applications in Chapter 10 we will need to evaluate the probability of
staying strictly above the line, i.e.,

for all 0
This requires only a slight modification. Note that the statement of the upper
bound in this case is exactly as in Corollary 1.9, namely we need to replace with
. However, since inf whenever , the upper bound is
valid. Now if 0 0 then for all 0

0. If 0 0, then
for all 0
0 and for all 1
0 for all 1
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Corollary 3.5.

Theorem 3.6.

Exercise 3.7.

Exercise JFF 3.8.

Exercise JFF 3.9.

Assume . If is finite for all , then

for all

If , then

for all

(i) . (ii) If , then .
(iii) If then .
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and the lower bound holds as well. We summarize this as a corollary.

0

0 0

0

A standard branching process, also called a Galton-Watson process, is defined as
follows [Big]. Start with a single “parent” node, and to each node assign a ran-
dom number of “children,” with the number drawn independently from a fixed
(discrete) distribution 0 1 . More formally, let be i.i.d. ran-
dom variables with distribution , representing the number of children of node
at generation . Then , the number of siblings at generation , is given by

0 1

1
3 5

Let denote the mean number of offspring per node, which we assume is finite,
i.e., . The following result is standard in the theory of branching
processes; see, e.g., the references in [Big].

1 lim 0 1
1 lim 0

Prove (i) and (ii) of Theorem 3.6. Hint: (i) is proved by condition-
ing. For (ii), first prove convergence in probability. Note that if 0, then it is
at least one, and useMarkov’s inequality. Now use the fact that the sets 0
are increasing.

Prove the following weak version of Theorem 3.6(iii): If
1 then lim 0 for all 0. Hint: is the
generating function of 1 . The generating function of is the -fold com-
position . Draw and conclude that are all
convex increasing on 0 1 , and converge to the unique constant in 0 1 for
which .

Show that lim 0 1 if 1 and 1.
Hint: draw of Exercise 3.8.
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Exercise 3.10.

Lemma 3.11.

1

Exercise 3.12.

1 1

Remark.

b k n

x n i i n
x

F n i F
i n j n

x n i x n j n i x l L l n i

L l n i l n i
x n x n

x n
F Z n x

n x x

Z n x x n i

k n x

k n k x n i

Z n x

b Z n x
n b

Z n
b

( )

( , )

w( , )

( , ) ( , ) w( , ) w( , ( , , )), ( . )

( , , ) ( , )
( , ), ( , ), . . .

w ( , )

( , ) ( , )

( ( )) ( ).

( ) ( , ) ,

( , )

< ( , )
> w >

>
w <

Prove that is a martingale.

Note that Exercise 3.7(ii) is a consequence of Exercise 3.10 when the martin-
gale is uniformly integrable, for then its mean converges.
We can now construct a branching random walk [Big]. Start with a branching

process and assign a value to the member of the generation, as fol-
lows. The root, or origin, of the branching process is assigned the value . Each
child of a member is displaced from the value of its direct ancestor by a random
variable, which is independent of all other random variables and is drawn from a
distribution . Formally, let be i.i.d. with distribution function . If the
member of generation is a child of the member of generation 1, then

1 3 6

where identifies the ancestor, at generation , of member . Note
that by construction, 1 2 are identically distributed (but not in-
dependent!). We denote by such a “generic” generation random variable,
and by a generic step-size with distribution . Finally, let denote the
number of generation members that are positive when .

[ 0]

0

Prove Lemma 3.11. Hint: write the middle term as

[ ] [ 0]

condition on the branching process and use independence.

This lemma makes it easy to calculate , by reducing it to two
quantities that are easy to calculate.
Theorem 3.6(ii) states that if 1, the process will become extinct

(i.e. zero for large ). On the other hand, if 1 and 0, then both will
contribute to the growth of (as increases). The interesting question here is the
balance between an increasing population (since 1) but decreasing (on the
average) size (since the step size satisfies 0).
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Theorem 3.13 .

Proof

Remark.

Corollary 3.14.
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Consider the case and .
(i) For any ,

where is defined in (1.4) using the displacement distribution .
(ii) If , then .
(iii) If , then .

Lemma 3.11 and Theorem 3.13 continue to hold if is
defined as the number of members of the generation that are positive.

Biggins [Big] 1 0

lim
1
log log 0

log 0 0 lim 0 1
log 0 0 lim sup 0

. By Lemma 3.11 we have

log log log 0

But by Theorems 1.5 and 3.4, 0 , since 0 , and (i)
is established.
If log 0 0, then (i) together with Markov’s inequality imply that

1 converges to zero geometrically fast. But then the Borel-Cantelli
Lemma A.116 implies that is greater than zero only a finite number of
times, establishing (ii).
To prove (iii) let be large enough so that

0 0 1

This is possible by Theorem 1.5. Now construct a branching process as fol-
lows. The offspring at generation one are the members of the branching random
walk starting at zero which are positive at generation . Thus 1 0 ,
so that the branching distribution for is the distribution of 0 . We
have arranged for the mean of this branching distribution to be larger than one.
Therefore Theorem 3.6(iii) shows that the probability that is strictly
positive. Let us construct so that 0 . From , ignore
not only those who are negative, but also all those who are smaller than at least
one of their ancestors at generation . This guarantees that for all ,

0 and indeed is a branching process with the specified
branching distribution.
Since 0 for all 0, we conclude that the probability that

along the sequence is positive.

The result depends only on the mean , not on the distribution of the
number of children. However, the whole step-size distribution of the randomwalk
enters through the computation of 0 . The same applies to the rest of the results
of this chapter.
The following variation is rather obvious:
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Branching random walk with a barrier.

1

Lemma 3.15.

Exercise 3.16.

Theorem 3.17 .

Exercise 3.18.

for all

Consider the
case and .
(i) For any ,

where is defined in (1.4) using the displacement distribution .
(ii) If then .
(iii) If then .

A somewhatmore interesting variation arises in the rollback application discussed
in Chapter 10. A branching random walk with a barrier is obtained from
a branching random walk by deleting all members who have even one
ancestor who is not strictly positive. Formally,

[ 0 for all 0 ]

where is defined after (3.6).

0 0

Prove Lemma 3.15. Hint: follow Exercise 3.12; construct the pro-
cess with a barrier by first constructing a process without a barrier and then delet-
ing members.

Biggins, Lubachevsky, Shwartz and Weiss [BLS]
1 0

lim
1
log log 0

log 0 0 lim 0 1
log 0 0 lim sup 0

The proof is identical to that of Theorem 3.13 and is left to Exercise 3.18. Note
that (iii) can be strengthened; see [Big].

Prove Theorem 3.17. Hint: use Corollary 3.5 and modify the
proof of Theorem 3.13.

This result is applied to a rollback model in §10.1. To get a feel for the behavior
of branching random walks with barrier, refer to the last part (analysis) of §10.1.
Some further results on this model are in [BLS]. They include a proof that (un-

der some conditions on the distribution ) sup is a finite random vari-
able with exponential tail. It is also possible to obtain, in some cases, explicit ex-
pressions for ; see [BLS].
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Poisson and Related Processes
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APoisson process with intensity is a counting processwith
(i) ,

(ii) for ,

(iii) is independent of whenever .

events

Most of our applications are based on (generalizations of) the Poisson process.
There is a very good reason for this: the real world is a continuous-time one, and
events in computer and communication systems are generally discrete valued: a
message is sent, a task is completed etc. The simplest continuous-time, discrete-
state-space stochastic process is the Poisson process. In addition, there are phys-
ical reasons to use a modeling approach based on the Poisson process; see, e.g.,
[GM, Ros1, Ros2, RS, Ta1, Ti].
In order to keep the book self-contained, we collect some basic material in

this section. We also present some special tricks that apply to Poisson processes.
While the statements of the theorems are precise, the derivation is intentionally
heuristic. The purpose of this chapter is to provide sufficient information about
these processes so that later chapters can be understood. A precise and more com-
plete treatment is available in Appendix B.

Recall Definition A.133 of point processes and counting processes. A Poisson
process is a counting process, and we use the notation for number of events
over the interval [0 .

0 0

!
0 1 0

0

We think of the Poisson process as representing , and of as a count
of the number of events (or total number of arrivals) up to time . There is an
obvious one-to-one relation between the counting process and the times between
events. The time of the first event is the time of the first jump of :

inf 0 : 0 4 1

Similarly, the time between the event and the 1 event is the time
between the and the next jump of :

inf 0 : 4 1
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Proposition 4.2 .

Proposition 4.3 .

Remark.

Proposition 4.4 .
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Let be a counting
process with . The following are equivalent;
(i) is a Poisson process with rate ,
(ii) has stationary, independent increments, and

there is an event in (0,t)
there are two or more events in (0,t)

(i) Let be i.i.d. exponentially distributed random variables with mean
. Then the counting process defined in (4.2) is a Poisson process with rate

.
(ii) Conversely, let be a Poisson process with rate . Then the times between
jumps defined in (4.1) are i.i.d. exponentially distributed random vari-
ables with mean .

Fix a time interval,
say , and condition the Poisson process to have jumps in that inter-
val. Then, regardless of the Poisson rate, the event times are distributed as i.i.d.
uniform random variables (actually, as their order statistic since you need
to rearrange the uniform random variables in increasing order).

Conversely, if we know only the inter-jump times, we can easily recover : it
is just the number of events up to , so

0 if ;
sup : otherwise. 4 2

The term “Poisson process” will usually refer to the counting process; however,
this will also refer to the associated Point process. There are many characteriza-
tions of the Poisson process, each useful in its own domain. Here are two.

[Ros3 Thm. 2.1.2 p. 32, Wo pp. 70–71]
0 0

The properties listed in the next three theorems turn out to be quite useful in
both the construction and analysis of systems based on the Poisson process, and
we illustrate this below.

[Ros3 pp. 35–36, Wo p. 71 eq. (65)]

Exponential random variables are memoryless in the following sense.
Let be the lifetime of a component, and suppose we observe that the component
is still in “good shape.” Then for exponentially distributed, the distribution of
the remaining lifetime is again exponential, with the same parameter. This and
Proposition 4.3 imply that the Poisson process is also memoryless in the sense
that if we stop the process at any (deterministic) point, what follows is again a
Poisson process with the same rate. It is easy to verify that the Poisson process is
a Markov process.

[Ros3 Thm. 2.3.1 p. 37, Wo Thm. 3 p. 73]
[0 ]

[0 ]

Put another way, this theorem states that the distribution of arrival epochs, con-
ditioned on arrivals in [0 ], is identical to the distribution of the values of
i.i.d. uniform [0 ] random variables.
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(i) Splitting a Poisson process: let be a Poisson process with rate . Every
time an event occurs, flip a coin with . If you get a head, throw
the event into box , and otherwise into box . Let be the number of
events in box at time . Then are independent Poisson processes with
rates and , respectively.

(ii) Merging Poisson processes: let be independent Poisson Processes with
rates and , respectively. Then is a Poisson process with
rate .

(i)

Indeed, assume that red balls arrive at some assembly line according to a Poisson
( stream, and green balls arrive at this assembly line according to an indepen-
dent Poisson ( stream. A person is placed to sort them into two baskets. A color-
blind inspector observes the arrival streams to the baskets. Being mischievous,
upon each arrival the sorter just flips a coin, with probability for heads,
and sorts the balls according to the outcome of the coin flips. Then (i)–(ii) imply
that for the inspector to discover the scam. This would not be the
case if the streams were not Poisson.

Let us see an amusing application of this to analysis. How quickly does the series
! converge to ? More precisely, what is the limit

lim
!
?

Here is a “calculus” for Poisson processes.

[Ros3 Thm. 2.3.2 pp. 38–39, Wo Example 2-5 pp. 74–75]

1 2

1

To define more precisely for part , let be i.i.d. Bernoulli random
variables, independent of the process , with 1 . Then is de-
fined as the counting process whose jump times are a subset of those of and
that satisfies

1

Obviously, (i) and (ii) extend to any finite number of independent Poisson pro-
cesses. These statements are both deep and special to the Poisson process.

Let us perform some simple calculations with Poisson processes and Poisson
random variables. Since by Definition 4.1(ii) the distribution of the number of
events in a Poisson process with rate for a duration of is a Poisson random
variable with parameter , the mean number of events is and the variance
of the number of events is . Now a Poisson random variable with parameter

is distributed the same as the sum of i.i.d. Poisson random variables with
parameter , or the sum of i.i.d. Poisson random variables with parameter one.
Hence, the central limit theorem shows that a Poisson ( ) random variable is
approximately normal, with mean and variance .
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This can be solved by inspection once we notice that the expression is the proba-
bility that a Poisson( ) random variable is less than or equal to . The central limit
theorem shows that this approaches the probability that a normal random variable
is less than its mean, which is one half. So the limit equals .

Let be a stochastic process. Denote by the past information
(Definitions A.99, A.123) about the process. By Definition A.134, the process
is called Markov if for all and all 0,

for all (Borel) sets . That the Poisson process is a Markov process is an im-
mediate consequence of the memoryless property; see remark following Propo-
sition 4.3. All the processes of interest to us are Markov, and below we construct
several jump Markov processes. The Markov property is essential to our large
deviations analysis, as will become clear in Chapter 5.
Since the Poisson process is one-dimensional, it is of limited use for model-

ing purposes. However, we can easily construct multidimensional processes out
of Poisson processes. The construction below will serve as motivation and intro-
duction to more general jump Markov processes.
Let be the -dimensional integer lattice (i.e., the collection of vectors in
with integer components). Let be independent Poisson processes

with rates , and let be vectors in . Define

4 3

Then is a multidimensional jump process, which is easily seen to be Markov.
From Proposition 4.5(ii), we know that the total event process
is a Poisson process with rate . Moreover, it is easy to see that,
conditioned on a jump occurring, the probability that it occurs in a direction is
just . Thus the distribution of this process is characterized
by the total event rate and the probability of jump in a certain direction, and is by
construction space homogeneous.
The next step is now obvious, and will give us the general discrete space jump

Markov process. For each in assign a jump rate
. If the process is at state , the time to leave is defined to be exponential

with rate , and the probability of going to is defined as

4 4
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generator

Let be a Markov process with state space and an
operator on real-valued functions on . We call the generator of the process
if, whenever the limit on the right exists,

for all

Equivalently, generate a set of exponential random variables with rates ,
and jump to if the corresponding random variable was the smallest in the set.
The equivalence of the two constructions follows from Proposition 4.3. These
definitions apply to any discrete, countable (or finite) state space , and we give
some simple examples below.

Let , and denote by the array . This ar-
ray is called the of this process. If the state space is finite, then is
just a matrix, and if we represent functions on as column vectors, we have

4 5

where the second equality follows from the definition of . Another com-
mon (and equivalent) definition for the generator excludes from the second sum
the term with . The same definition extends to the countable case, so that
is a linear operator on the real-valued functions on . This generator will prove
quite useful, so we make some effort to develop intuition about it. In fact, under
rather broad conditions a generator determines a process (probabilistically). The
formal definition of a generator is more general; we illustrate below that the def-
initions agree.

0

lim
[ ]

4 6

The existence of the limit depends on both the function and the point . The
set of functions for which this limit exists in is called the domain of
and is denoted .

Let us show that these definitions are equivalent for the simple case of a Poisson
process with rate . In this case , and for

if 1
0 otherwise.

Our first definition (4.5) thus gives

1
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Let us compute directly; for bounded the right-hand side of (4.6) reads

lim
1

!

lim
1

!

1

4 7

where the interchange between limit and summation is justified by boundedness
[Theorem A.91(iii); clearly, weaker tail conditions on suffice].
We can derive the equivalence of (4.5) and (4.6) for the more general case in

about the same way as for the Poisson process. Let us assume that

sup

Then the time to leave state is exponential with rate , and the probabil-
ity of going from to is . Let be a bounded function. To
compute the expectation in (4.6) we separate the first jump from the rest. Since
the probability of exactly one jump in [0 is ,

lim
1

where represents the case of two or more transitions in 0 , so that

at least two jumps occurred in 0 2 sup

Since

lim
1

at least two jumps occurred in 0 lim
1
1 1 0

we have

lim
1

The interchange between limit and summation is justified by bounded conver-
gence, Theorem A.91(iii), since the time cancels out (except in the exponent),
exp is bounded and the measure defined by the rest of the sum-

mands is finite (at most ). Thus we obtain (4.5).
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, . . . ,
( )

λ( , ) λ ( ) ( . )

/ /
λ λ

λ ( ) µ > µ

( ) λ ( ) ( ( ) ( )) . ( . )

λ λ ( ) < .

A general jump Markov process need not be defined on a discrete state-space. For
example, if , we can construct such a process by making it jump from
state after an exponential time with mean and, when it jumps, have its
next position distributed according to some distribution . However, unless the
distribution is supported by at most a countable number of points, we lose the
interpretation of this process as jumping according to the smallest exponential ran-
dom variable with rate . Definitions (4.5)–(4.6) still make sense, with sums
in (4.5) replaced by integrals, and they are equivalent. In fact, it is easy to see that
the same calculation establishes the equivalence for the general jump Markov case
if the support of is countable; we just have to invoke boundedness to interchange
the order of limit and summation.

In most of the applications, the jumps of the process are only to the nearest neigh-
bors. One such jump Markov process is the multidimensional birth-death process.
We can loosely think of a -dimensional birth-death process as representing the
number of live creatures of types. At each event-point, at most one individual of
each type may be born or die, while the birth (death) rates depend on the current
state. However, we may have a simultaneous birth-death case, where one individ-
ual from each of several types is born, and at the same time one individual from
each of several other types dies. Other possible phenomena are mutation, coagu-
lation, etc. Moreover, for this process the numbers of individuals of a type is not
necessarily positive. Thus we have a finite number of jump directions ,
where the components of the vector include 1 s, 1 s, and 0 s only, and the rate
takes the form

if ;
0 otherwise . 4 8

Most of the processes that arise in queueing applications are of this form. As the
most basic example, the queue size of an 1 queue is a birth-death process
where arrivals are described by 1, with rate , and departures by

1, with rate [ 0], where is the service rate.

This trick of switching between interpretations of the process is fairly useful.
What we have discovered is that, in some sense, only the first jump counts; after
that the process “restarts.” Let us specialize to processes of the type described in
(4.8) and derive a general tool for approximations from one of the representations.
So, consider a process with generator

4 9

Assume that the maximal rate of jump out of any state is finite:

sup
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Definition 4.7.

Example 4.8.

Example 4.9.
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Two stochastic processes are called coupled if they are defined on
the same probability space.
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Then by Theorem 4.5 we can construct a process with this generator in the follow-
ing way. Let be a Poisson process with rate . Given a starting point for the
process, whenever the process is at a point the following happens. The process
may leave at the next jump of . At that time, an independent 1-sided
die is cast. The probability of side 1 is . If side 1
appears then the new state is . If side 1 appears, the process stays at
state .
This construction allows us to compare, and therefore bound, one process in

terms of another, usually simpler process. The general definition is quite abstract.

Here is a specific example, which will be made more concrete below. This ex-
ample illustrates the use of coupling of jump Markov processes so that informa-
tion on one could be used for the other. Let and be two jump processes
of the type (4.9), with the same jump directions and with rates and ,
respectively. Let be a finite upper bound for both and . We can then
construct the processes in the following way.

Consider a Poisson process with rate , and independent ran-
dom variables

1 2

taking values 1 1, all defined on a probability space . As-
sume the are also independent of the process 0. Represent the
processes and through and the , where is the outcome
of the die corresponding to process at its visit to state . Then and have
the desired generators, are coupled, and moreover they share some (but not all) of
the jump times.

Continuing Example 4.8, let have rate

where sup

Let be a process with rates , independent of . Construct as before, except
now is thrown at the jump of . Assume that, on the
same probability space, we also have the independent Bernoulli random variables

. Note that by definition jumps whenever does. At each such jump,
if is at and if jumps in direction , then will either jump in direction or
stay at according to whether the Bernoulli random variable took the
value one or zero. The probability of 1 is . A little reflec-
tion shows that the processes have the following property: whenever jumps in
direction , so does . Thus at any time , the total number of jumps of in any
given direction in [0 dominates that of .
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4.3. Martingales and Markov Processes

λ <
v
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µ > λ
( )

( ) ( ) ( )
ω ( ( )) ( ( ))

The preceding discussion forms the theoretical foundation for the technique known
as uniformization. When simulating or analyzing processes based on Poisson pro-
cesses, one may assume that the events occur in discrete time, not continuous time,
as follows. We consider a discrete-time, discrete-state space Markov chain where,
if we are at state , the probability of a transition occurring at any integer
time is , where

sup

Thus the transitionmatrix of this chain is . Note that we have introduced
“dummy” transitions which occur with probability .
We relate this to the original system by associating the integer time with the
random time when a Poisson process with rate achieves events (including
“dummy” events!).
The advantages of uniformizing are lower variance and the availability of a host

of methods for analyzing discrete time Markov chains. For a precise derivation,
see (B.9)—§B.1.

Given a process with and with values in , construct
a process that dominates it in direction . That is, starting at the same point ,
we have for all 0 and all .
It is possible to include an initial distribution in the coupling: there is no need

that the two coupled processes start at the same point, or with the same initial dis-
tribution. In the case of the example below, such a technique enables one to bound
the moments of one process in terms of another process for which explicit formu-
las are available.

Consider two 1 processes and [as defined below
Equation (4.8)] with the same parameters, and with . Construct a coupling
so that the following conditions hold. The process is in steady state, that is,
its distribution is invariant under time shifts, 0 0, and for all
and . Conclude that for all increasing functions and
all .

One of the most useful consequences of the introduction of generators is that they
allow us to generate martingales that are related to the jump Markov processes
of interest. This will come in very handy in the analysis of large deviations for
processes, since tools for the analysis of martingales are well developed.
The exposition in this section is purely heuristic. However, since these results

are so useful for the analysis of jumpMarkov processes, we develop them in detail
in §B.4.
Recall the formal definition (4.6) of a generator of a Markov process . Fix

some real function and assume that, at time 0, the process started from
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uniformly positive definite

Assume and are bounded and Lip-
schitz continuous, and that is uniformly positive definite. Let be a Markov
process with values in , and with generator defined in (4.11). Then for every
smooth function (bounded continuous, together with its derivatives up to sec-
ond order), the process defined in (4.10) is a martingale. Conversely, let be

0 . Now define

4 10

Then, loosely speaking,

lim
1
[ ]

lim
1

[ ]

lim
1

0

where we have not stated the continuity and other technical conditions needed to
justify this sequence of equalities. Now, if we start at time with initial condition
, then this calculation and the Markov nature of the process will yield

where is the -field of 0 , i.e., it encodes all information about
the process up to time . But this means that is a martingale. For a precise
derivation and sufficient conditions in the jumpMarkov case, see §B.4. A general
derivation can be found in [SV, KS]. The importance of the martingale (4.10) is
underlined by the following theorem, which applies to a different but important
class of stochastic processes—diffusions. Let and be functions from to
, and let . We call if for some
0,

for all and

Define the operator by

4 11

[EK, Ku1, SV, KS §5.4]
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Let be a sequence ofMarkov processes, and let be a generator
satisfying the conditions of Theorem 4.12 or 4.13. Assume the initial distributions
converge to the distribution concentrated, say, at the point , in the sense of Def-
inition A.87. Suppose the set is tight in the sense of Definition A.89. If for
all , all and all functions and which are
bounded and continuous, together with their derivatives up to second order,

then , a Markov process with generator .

the operator (4.11) defined on the smooth functions on . Then there is a con-
tinuous (measurable) process so that, for every smooth , the process is a
martingale. This process is Markov and its distribution is unique. Consequently,
if for a process the process is a martingale for every smooth , then is
Markov and is its generator.

Theorem 4.12 continues to hold if the generator takes the form
(4.5) provided the sums are all finite and is bounded below. The process
is then right continuous (rather than continuous). The continuity assumptions on
are not necessary.

The boundedness assumptions on , (above) and (below) can all be discarded.
The price to pay is the possibility of explosion: the processes may run off to in-
finity in finite time. In this case, a “localization argument” is used: the process is
considered only up to the time of this explosion, and the “stopped process” satisfies
the statements of the theorems.

Here is a sample theorem that will allow us to do exactly such an approximation.
For details (and proofs) about this powerful approximation technique see Kurtz
[Ku1], Ethier and Kurtz [EK], and references therein.

0

lim

0 4 12

We will need to apply Theorem 4.12 only in the degenerate case of Corol-
lary 4.15, and for jump Markov processes with a finite number of jumps. For
the latter process, an analogous theorem can be obtained from the development
of §B.4, leading to Equation (B.25). In this case the result is

Since we already know that the generator determines the process (in the sense
of distribution), Theorem 4.12 gives us a way to establish the characterization of
processes in terms of associated martingales. This is very useful in applications,
when we try to obtain approximations or limit theorems. Trying to compute di-
rectly the effect of small perturbations in some parameters on the distribution of
the process may be quite difficult. However, the effect of such perturbations on
the generator of the process can often be written by inspection. Then the limiting
process can be found by computing the limiting generator (subject, of course, to
technical conditions).
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The scaled process.

Corollary 4.15.

Proof

Under the conditions of Theorem 4.12, first-order generators de-
fine processes.

( ) ( ) ( )/

( )( )
( )

.

( ) ( / )

( )( )
( ( )) ( ) ( )

λ ( ( ) ( ))

λ ( ) .

( . )

( )( ) λ ( ) .

( ) .

( )( ) ( ) ( )

( )

( ) ( ).

N t z t N nt n

L z
nz y

L f z
f N nt f
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s nt g g y f y n
g

L f z n
g N s g y N y
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n g y g y

n f z
n

f z

L f z
d
dz

f z

L L f g f g x

d
dt
x g x

f

L f x ds g x
d
dx

f x ds

d
ds

f x ds

f x f x

The point is that if in that estimate is replaced with , then by definition the
expectation is zero. So, if is close to in some sense, the estimate is easy to
establish. See Exercise 4.16 below.

Consider, for example, a Poisson process . Let be the pro-
cess we obtain by making the jumps smaller, but faster. To compute the generator
for the new process, apply Definition 4.6. The definition of and the change

of variable give

lim

Now set and define the function through . Then by (4.5)
applied to ,

lim
[ 0 ]

1
1

4 13

Thus, if there is a limit here, it should satisfy

However,

deterministic

. We can easily deduce this from Theorem 4.12 as follows. Suppose a gen-
erator is given by for some function . Let be a process that
satisfies

Then for any smooth ,
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Exercise 4.16.

Generating martingales.
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Thus is a martingale (in fact, it is constant). But this implies that is indeed
the generator of the process . Since the generator determines the distribution of
the process, we conclude that any process whose generator is a first-order differ-
ential operator is deterministic (except for possible random initial conditions), and
Corollary 4.15 is established.

For the scaled Poisson process we conclude that, under the appropriate
technical conditions, the limit of the process scaled by is a deter-
ministic process. Since here the limit must satisfy

or 0
For , we could obtain this result from the law of large numbers. However,
our result is stronger—it deals with the convergence of the process. Therefore, in
order to make this convergence result precise, we need to define a space of paths
that is appropriate for the paths of the Poisson process, a notion of convergence
in that space, and specify in what (probabilistic) sense the sequence converges.
Using this technique one typically obtains “convergence in distribution” which,
in this context, is called “weak convergence” (Definition A.87).

The process we shall concentrate on throughout the rest of the book is a birth-
death process with precisely the same scaling as in (4.13). So, let be a birth-
death process with generator as defined in (4.5)–(4.8). The scaled process is
the jump Markov process such that

0
1

0 and 4 14

Note that a generator defines the of the process—not the paths. If the
are constant (or more generally if for all 1), then we can

define by scaling time and space (as was done for the Poisson process). But
this is not true for the general case; see also Chapter 5.

Let be defined through (4.14) and assume 0 0. Assume
that log are bounded and Lipschitz continuous. Show that , where

0 0 and

Hint: use (4.12), write as , and bound the “error term,” noting
that is smooth and bounded.

Using Theorem 4.12 we can generate other martingales. Our first goal is to derive
(heuristically) the famous “exponential martingale” (4.16) below. We start with a
Markov process and its generator . Fix a nice (smooth, bounded) function
and consider the two-dimensional process

exp
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Change of measure.
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It is easy to see (at least formally) from Definition 4.6 that the generator for the
process is given by

1 4 15

[Use Taylor expansion near the initial point 0 and expand the exponent to a
series.] Consider, for example, a function of the form , where .
Then

Now let (assume is bounded away from 0). Then
0. Theorem 4.12 and the definition (4.10) now imply that

exp
4 16

is a martingale, called an exponential martingale associated with the process .
For a precise derivation of (4.16) see §B.4.

Show that for a birth-death process (4.8), the exponential martin-
gale corresponding to takes the form

exp 1 4 17

In the proof of Chernoff’s Theorem we obtained the lower bound on the proba-
bility of a rare event by a change of measure. In other words, we constructed a
different distribution, or measure , and wrote, for a set or event

is the Radon-Nikodym derivative; see §A.4. We would like to use the
same idea for Poisson and related processes. Here is a heuristic derivation of a
formula for when and represent Poisson processes. A rigorous treat-
ment is given in §B.4.

Suppose that we observe a Poisson process with rate over a time interval
[0 ], and we see events, at times where 0 and .
From Definition 4.1, the probability that no event would occur in [0 ] is .
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From Proposition 4.2, the probability that an event would occur in [
is . Similarly, the probability of no event in [ is and that of a
single event in [ is . Similar expressions hold for subsequent inter-
vals. Since the intervals between events are disjoint, the events are independent,
and we may compute the likelihood of the path we observed as

Similarly, the likelihood of this path for a Poisson process with rate and distri-
bution is

Therefore,

which we may also write as

exp log 4 18

There is another way to arrive at (4.18). Divide the interval [0 ]
into equal intervals, and write the Radon-Nikodym derivative for the process
sampled at the end of these intervals.

Thus the Radon-Nikodym derivative depends only on the number of jumps in
the interval, but not on their times. To get the correct formula we replace by
the (random) number of jumps on [0 ]. Now if we have a pair of Poisson
processes and with non-constant rates, the same reasoning leads to

exp log

Here is the state of the process just before the jump and is the (ran-
dom) number of jumps. Thus when the rates depend on the position, the Radon-
Nikodym derivative depends on the number of jumps in the interval, and also on
the times of jumps.
Finally, to generalize this to multidimensional jump Markov processes simply

note that by uniformization [see the end of §4.2 and Equation (B.9], in §B.1) we
can consider the jumps as being driven by a single Poisson process. So if we have
processes and as jump Markov with jump directions 1 and
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corresponding jump rates and , then we should expect

exp log

4 19
where denotes the directions of the jump, i.e., implies
. This is proved in TheoremB.6, §B.4. It is also established that, as a function of
, is a martingale, and in fact every positive mean-one martingale defines

a change of measure. These facts hold for much more general processes.
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Chapter 5

Large Deviations for Processes
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In this chapter we state and prove a large deviations principle for a class of multi-
dimensional jump processes. We introduced multidimensional jumpMarkov pro-
cesses in Chapter 4; let us briefly recapitulate. We are given a finite set of vectors

in . We consider processes 0 with generator

Here is a jump direction and the rate of jump in that direction when the
position is .
Recall that in Chernoff’s Theorem applied to a Poisson random variable (Ex-

ample 1.13), the question of estimating

Pois

is equivalent to estimating

Pois

As in (4.13), applying this scaling to the process we are led to consider the pro-
cess whose generator is

5 1

In other words, the process has jump rates and jump directions . The
process is the main object of study in this book. Nearly all the applications
have models of the form .

We shall assume that the logarithms of the rates log of (5.1) are bounded and
continuous. In particular, this precludes a case where some rates vanish and, in
terms of applications, implies that there are no boundaries. However, the results
also apply in many cases when there are boundaries; in some cases, use of the con-
traction principle (§2.3) transforms a problem with boundaries to a problem with-
out boundaries (see, for example, §11.4). Freidlin-Wentzell’s theory of Chapter 6
allows us to essentially ignore point discontinuities, i.e., these two chapters put to-
gether providemost of the results we need for one-dimensional processes. Further-
more, many interesting questions about higher-dimensional processes with bound-
aries do not involve the boundaries; in these cases the results of this chapter apply.
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There is no theory available, at present, for the case of “general boundaries.”
Chapter 8 is devoted to the large deviations theory for processes with some specific
types of boundaries.

The results we seek concern the question: how likely is it that the process
stays in a given set of paths? To describe the behavior of the in the
manner of Chernoff’s Theorem or according to the general setup of §2.1, we need
to define the applicable space of functions to which the paths of the process be-
long. We also need the notions of open and closed sets, i.e., a topology. In our
case the relevant space is simple: it includes functions with values in that
are piecewise constant and right-continuous (as are the multidimensional jump
Markov processes), and their limits, which are continuous functions. The ap-
propriate topology for our applications is the Skorohod topology which, unfor-
tunately, is not simple. In §A.1 we provide first some intuition and then a pre-
cise definition for the Skorohod space [0 ], its topology and the metric
we shall use. The relation with the more familiar “sup norm,” which we will also
use, is discussed in the appendix as well.
For a large deviations principle, we also need a rate function . Heuristically,

in order for the process to be near some continuous function , both processes
should start nearly at the same point and also have nearly the same increments,
i.e.,

0 0 and

for all 0 (at least when is small). But locally (i.e., as long as
the rates do not change much), is a sum of independent Poisson
processes (one for each direction of jump). From Exercise 1.25, if

where the are i.i.d. and Pois , then in the notation (1.10) of ran-
dom variables, the probabilities of rare events are governed by the function

sup 5 2

where

log log 5 3

1 5 4

If the rates were constant and linear, we would obtain, over the time inter-
val [0 ], the rate function , where . The local effect of the
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Assume that for each , is a bounded and Lipschitz con-
tinuous function. Then is a good rate function [in ], and
(i) For every closed set and every ,

(ii) For every open set , uniformly for in compact sets,

rates and the generality (non-linearity) of the function are taken into account by
the definition of the rate function

if is absolutely continuous,

otherwise.
5 5

Thus, is just the “local” rate function.
The large deviations principle for that we prove in this chapter is:

log
[0 ]

[0 ]

lim sup
1
log inf : 0

[0 ]

lim inf
1
log inf : 0

The proof of this theorem is in three parts. That is a good rate function is
established in Proposition 5.49 and Corollary 5.50, §5.2. The lower bound is re-
stated as Theorem 5.51, §5.3, with a proof at the end of that section. The upper
bound is restated as Theorem 5.54, §5.4, and proved as a consequence of Theo-
rem 5.64, §5.5.

a. In the notation of §2.1, the space we consider is

[0 ] : 0

By TheoremA.9, a set is open (closed) in this space if and only if it is of the
form : 0 , where is open (closed) in [0 ] . Thus
Theorem 5.1 makes a statement that is stronger than a standard large devia-
tions principle: it concerns a family of such principles, with a “parameter”
.

b. The uniformity in the lower bound means that we can get close to the bound
by choosing large, simultaneously for all in a compact set. Uniformity in
the upper bound holds in a weaker sense: the right-hand side, where is eval-
uated at paths starting at , is a bound not only for the process starting at , but
is also close to the bound for neighboring starting points. See Theorem 5.64
below, Corollary 5.65, and the remark concerning terminology following the
corollary.

c. Although we usually know the starting point for , the reason we need to
state Theorem 5.1 with and obtain uniformity in the initial condition is
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that if the initial condition is not known, it can have a distribution in a small
neighborhood without affecting the bounds. This uniformity is also useful in
obtaining bounds; see, for example, the derivation below.

d. In (4.13) we defined the processes in the one-dimensional, constant coef-
ficient case. For that case, (5.1) was a consequence of the definition

where is a Poisson process. In general, the definition (5.1) is
equivalent to a direct, explicit definition only in the con-
stant coefficient case. However, we allow the rates to depend on the space
variables. Thus definition (5.1) is more general.

e. The derivation applies to the case where the are not on a lattice, so it en-
compasses more than birth-death processes. However, our applications will
use only the birth-death case. It is also possible to treat time-inhomogeneous
rates with little change, but we will not do so—see [Wen].

To illustrate the statement of this theorem, consider some continuous function
(path) and the following sets of paths around it: the “open sausage”

[0 ] : sup

and the “closed sausage”

[0 ] : sup

(See Exercise A.63 for information about these sets.) Then the large deviations
theorem states that
[0 ]

provided 0 0 is fixed.
Theorem 5.1 as well as the illustration above deal with sets of paths over a fi-

nite time interval. This is an essential restriction: as the exercise below shows,
in general even the “law of large numbers” would not work on the infinite-time
interval. However, it is possible to “bootstrap” the finite-interval theory: this is
the subject of Chapter 6.

Let be a sequence of independent Poisson processes with
mean . Show that

sup 1

for every and every positive .

Here is a heuristic derivation of the statement “the probability that the process
stays close to a given function is approximately exp .” Divide
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the interval [0 ] to equal subintervals of size . The probability that is
close to for all 0 is approximated by the product of the probabilities
that it remains close on each interval: it starts near and goes in the same
direction as , namely in the direction for each . (Since we are being
informal, in the following explanation we hope the reader doesn’t mind a condi-
tioning on being written as, e.g., sup . The notation
usually means starting at time 0; here, we mean whatever time is appropriate.) In
more detail, by the Markov property, for any 0 ,

sup

sup sup

sup

sup

sup

sup sup 2

Iterating on the subintervals,

sup sup

sup sup 2

sup sup

5 6

Since we assume that and are close at the beginning of each subinterval, we
need to find the probability that a change in is about equal to the
change in . Now over a small interval of time, the jump
rates do not change much. Therefore, Proposition 4.5(ii) (extended to



L

74

P P

P

P

P

∆

∆

( )

( )

1 1

1 1

0
0

1

0

0

0
0

%

= =

′ ′

= =

′

′

′ ′

!
≤ ≤

−

=

′

′

!
≤ ≤

∞
∞

Chapter 5. LARGE DEVIATIONS FOR PROCESSES

n n n
k

i

n t

j
j i i

j i i n

n
n

k

i

n t

j
j i i

n

n i

n

r
t T

n

J

j
T

r
t T

n

n
n

∑∑

( ) (∣∣∣∣

∣∣∣∣

)





∣∣∣∣∣∣

∑∑
∣∣∣∣∣∣





( )
∏ ( )

( ∫ )

( )

! = ! + − !

= !

!

| ! − ! | = ! − !

= ! − !

≈ − ! !

→ →

! ! ! !
!

! ! ≈ ! ! ∈ +

|! − ! | ≈ − ! !

≈ − ! !

|! − ! |

! !
! → !

z t z t t z t

n
y e

y z t

z t r t t
z t
t

r t
t

n t
y e r t

t

n t z t r t

t

z t r t x x
r

z t r t r j r t t j j

z t r t n r j r j

n r t r t dt

z t r t J

z z
z t z t

∆ ( ) ( ∆ ) ( )

,

λ ( ( ))

(∆ ( ) ( )∆ < δ
∆ ( )

∆
( ) <

δ

∆

∆
( ) <

δ

∆

( ∆ #( ( ), ( )).

δ ∆

δ

( ) ( ) λ ( )

#( ( ), ( ))) #( ( ∆), ( ))) ∆, ∆ ∆ .

( ) ( ) < δ #( ( ∆), ( ∆))∆

#( ( ), ( )) .

( ) ( ) < δ

( ) ( )

the multidimensional case) indicates that we can represent

1

where each has a Poisson distribution with rate . Then by (5.3) and
the large deviations results for random variables,

1

exp

We must let 0 before we let 0. This will be apparent during the
technical parts of the proofs in this chapter. What makes this argument work is
that, to first order, the value of is immaterial in the result of Chernoff’s Theorem.
Now on the event of interest, is close to . Since is smooth in

and is continuous,

whenever [ ]

Therefore,

sup exp

exp

A similar approximation provides a lower bound of the same form: replace the
left-hand side in (5.6) by

sup

to obtain a lower bound, and proceed along the same lines.
The remainder of this chapter is organized as follows. We start in §5.1 with

Kurtz’s Theorem, which is a generalization of the strong law of large numbers
to the processes . It concerns a deterministic process denoted that has the
property that in a very strong sense. This result is interesting in
its own right, and is a key element in the proof of the lower bound. It is used
extensively in the proofs and in the applications that follow.
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To see that is indeed a generalization of , let
be independent Poisson processes with rate . Then, by Proposition 4.5(ii),

is a Poisson process with rate , and so by (4.5) and (5.1),

Next, in §5.2, we derive some properties of the rate function. The derivations
are complicated enough (and technical enough) to warrant a separate section. If
this is your initiation into large deviations for processes, we recommend that you
skip this section for now, or at least skip the proofs.
In §5.3 we prove the lower bound for open sets. The proof is very similar to

the proof of the lower bound in Chernoff’s Theorem: we define a “twisted pro-
cess” (one with jump rates that are different from the , but with the same jump
directions ). We show that the law of large numbers (Kurtz’s Theorem) for the
twisted process gives a lower bound. The lower bound is derived in terms of a
function , defined in (5.23), that does not have the form of the rate function .
In Lemma 5.26 of §5.2 we establish the equivalence of and .
Finally, in §5.5, we prove the upper bound for closed sets. As in Chernoff’s

Theorem, the key is an exponential Chebycheff estimate. This estimate is de-
rived here from the exponential martingale, defined in (4.16) and (B.32). Apply-
ing (4.17) with the function [Exercise 4.17 and Equation (4.17)] we obtain
a martingale

exp 1

for every . The upper bound is complicated enough that we provide a
separate orientation section—§5.4—to help expose the overall plan of the proof.

Kurtz’s Theorem is an extension of the law of large numbers. If are
i.i.d. random variables with mean , then the law of large numbers states that

becomes small as increases. For randomprocesses, a similar result can be stated:
if are i.i.d. processes with mean , then under the appropriate
conditions,

sup

becomes small as increases. In fact, a slightly more general result is obtained
here by analyzing the process instead of .
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Let be uniformly bounded and
Lipschitz continuous, and let be the unique solution of (5.7) with .
For each finite there exist a positive constant and a function with

and

such that, for all and ,

Moreover, and can be chosen independently of .

where 1 and . But we allow , corresponding to a type of
coupling among the processes that physicists call “mean field coupling.”

For the Poisson process, we can derive something very close to Kurtz’s Theorem by
a different approach. Let be a Poisson process with rate and let 0 0.
Then is a Poisson random variable with parameter , and by Chernoff’s
Theorem, for (Example 1.13), , where

log 1

Let us examine the generator of a general to see what we might expect as
. From the definition (5.1),

1

by Taylor’s Theorem. We are led to the definition

Since is a first order differential operator, it corresponds to a deterministic
process (Corollary 4.15) satisfying

5 7

The aim of this section is to prove the following result.

Kurtz [Ku2] :
0

lim 0 lim

1 0

sup

Under the assumptions on , the solution exists for all , is con-
tinuously differentiable, and is unique; see Definition A.65 and Theorems A.66
and A.67.
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Kurtz’s Theorem is the basis of our large deviations results. It has many other
uses as well. When analyzing a system that can be modeled by a process such as

Now suppose that for some . By Proposition 4.4, we know that the
jumps of occur uniformly in [0 ]. The Kolmogorov-Smirnov Theorem [Br
§13.6] states that for a sequence of i.i.d. uniformly [0 1] distributed
random variables, the empirical distribution

1
[ ]

satisfies
sup

where is a known distribution with a Gaussian tail. Representing by those
uniform [0 1] random variables, a little algebra shows that

Therefore, conditioned on ,

sup
1

In other words, the deviation between and , given , is about
times a random variable with a Gaussian tail. Hence

sup

2

sup
2 2

exp min
2 2 2

where is the rate function for the random variable . Since has a Gaussian
tail, we know that exp for some 0; hence

2

The only reason that the preceding argument is not a proof of exponential decay
is that we are interchanging the Kolmogorov-Smirnov limit with the large devia-
tions limit on ; this interchange should be justified. Instead of doing so, we will
prove the general theorem; we hope that our argument has rendered Kurtz’s The-
orem plausible.
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Let be a bounded function on
satisfying

for , where and are some positive constants. Then .

Suppose and
are such that

is a right-continuous, mean one martingale for each . Suppose further that
is monotone increasing in the first argument and

for all and all . Then for any and any ,

, clearly the first step is to investigate the behavior of . This basic method
is increasingly utilized, sometimes under the rubric “fluid limits” or “mean flow”
analysis [Cn, CM, Da, DM, Ku1, We2].
As far as large deviations is concerned, after the behavior of has been ob-

tained, one would like to estimate how often behaves differently. This is the
subject of the lower and upper bounds given in §5.3, §5.4, and §5.5.
As a final note before we begin the proof, (5.7) can be written as

0 5 8

This is the form we will use in the proof.
The proof of Kurtz’s Theorem is presented as a series of lemmas. This is done

partly to give the proof in bite-size chunks, and partly since we will later need to
reference the ideas of these lemmas. Those lemmas in turn rely on two technical
results. Wewill now state the technical results, then provide an outline of the proof
of Kurtz’s Theorem, and then proceed with the proof.

Gronwall’s lemma [Hal] [0 ]

0

Prove Gronwall’s Lemma. Hint: , where bounds
on [0 ]. Now use repeated substitutions.

: [0 ] : [0 ]

exp

0
:

[0 ] 0 0

sup inf exp
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. Fix 0 and use the assumptions on and to obtain

sup

sup exp exp

sup exp exp

exp
where the last relation follows from the martingale inequality (A.15). Now min-
imize over .

The idea behind the proof of Kurtz’s Theorem is very similar to the idea be-
hind large deviations upper bounds: in each direction , we estimate how much

can differ from its mean by using an exponential martingale (the process ver-
sion of Chebycheff’s inequality). Since there are only 2 basic directions in ,
namely, the coordinate directions and their negatives, if we have an estimate for
the (scalar) process in each direction, we can piece together a bound on the pro-
cess being far from its mean . Using the formulation for given in
Example 4.17 and (5.8) for , we see that for any ,

exp

1 5 9

is a mean onemartingale. Let , and recall Taylor’s expansion

1
1

Substituting this into (5.9), we obtain that

exp
1

is a mean one martingale. Now use the Lipschitz continuity of to replace
the term with an estimate , and we are in a position
to use Lemma 5.6, with being the term . This will show that an integral
expression in is small, and Gronwall’s inequality will enable us to con-
clude that itself is small. Now we use the estimates in each of the 2
basic directions to conclude that is small.
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Let be a random vector (with values in ). Suppose there are
numbers and such that, for each with ,

Then

If are all bounded, then there is a function with

such that

1

2

. For 1 , let , the standard orthonormal basis of , and
let 1 . Now

: :

so 2 by a union bound (Lemma A.115).

The following corollary is not used in proving Kurtz’s Theorem. It is used in
the proof of the upper bound. We give it here since the idea is the same as in the
next main lemma. By considering the case of small, the corollary implies that
is nearly equicontinuous at 0.

lim

sup 0 2 exp

. Since the last inequality holds trivially whenever 0, it suffices
to prove the corollary for large. For fixed , with 1, take

exp 1

To apply Lemma 5.6, note that by Exercise 4.17, and make a right-
continuous mean one martingale whenever 0 . Defining

sup : 1
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Assume the functions are all bounded and that is a right-
continuous solution of (5.8) with . Then for each with
and each there is a function so that

and

Moreover, can be chosen independently of .

and max , we have

Hence Lemma 5.6 shows that

sup 0 inf exp

inf exp

Take
1
log

which is positive for all large. Then a little algebra show that if we set

log 1 5 10

for large and 0 otherwise, then

sup 0 exp

Applying Lemma 5.7, the corollary is established with .

We now come to the main lemma for Kurtz’s Theorem. It is proved in exactly
the same way as Corollary 5.8.

0 1
0 0

lim 0 lim

sup

Since we do not assume that the are continuous, there is no a priori
guarantee that a solution to (5.8) even exists.
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. As in Corollary 5.8, for each and 0,

exp 0

is a mean one right-continuous martingale. Since 0 0 , by (5.8),

exp

exp 1

exp

exp 1

To apply Lemma 5.6, let denote the first two terms in the exponent and the
last integral. From Taylor’s Theorem, for some with ,

1
2 2

Using this, we see that

2
where and are as in Corollary 5.8, and 1. Now by Lemma 5.6

sup

exp
2

5 11

for all 0. Rewriting in the form of the claim of this lemma and changing
variables from to , let

sup
2

5 12
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Choosing small enough so that we conclude that 0, and
satisfies the exponential bound. We will now define the function for small and
for large , and set otherwise. For small , choose
and substitute in (5.12b). With this choice for , a little algebra shows that

1
2

as 0, and, in particular, is positive for all 0 small enough. For
large , choose log where is chosen to satisfies 1. Then

2
1
2

log

which is at least 2 for all large . With this choice of , for all large enough

2

2
log

Finally, the fact that does not depend on is evident from the proof.

The preceding lemma and Gronwall’s inequality yield Kurtz’s Theorem in a
manner reminiscent of the basic existence proof for solutions of ODEs. Here are
the details.

. By hypothesis, are Lipschitz continuous,
so that there is a constant such that

5 13

Applying Lemmas 5.7 and 5.9, we obtain

sup 5 14

2

where we obtain from as in Corollary 5.8. Now for any in ,

implies
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Hence by (5.13), for all ,

5 15

Combining (5.14) and (5.15) yields

sup 2

By Gronwall’s Lemma 5.4, if for some , then necessarily

for some . Applying this to the function we conclude that

sup

sup

2

and the result follows with . and can be chosen inde-
pendently of since Lemma 5.9 and the derivation do not depend on .
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θ #( ) θ

#( ) , ( ) .

θ, (θ) #
#
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( , θ) λ ( ) ,

#( , ) θ, ( , θ) ,

( )
# ( ), ( )

Define the function through (1.10). Then
(i) is convex,
(ii) for all ,
(iii) is lower semicontinuous, i.e., if in as , then

In this section we collect a number of properties of the local rate function , the
rate function , and related quantities. The less technical results are given in
Corollary 5.12, Exercises 5.14 and 5.27, and in Lemmas 5.15 and 5.16. In ad-
dition to smoothness and approximation results, Proposition 5.49 establishes that

is a good rate function. It is perhaps best to skip the other parts of this sec-
tion in first reading, since they provide little intuition; they are rather technical in
nature.
Let be a random variable in with finite, and for recall

the definitions (1.10) for random variables

log inf sup log

Let us obtain some properties of .

0

lim inf

. (i) is the supremum (in ) of the functions log , which are
convex in . Hence Theorem A.47 shows that is convex.
(ii) By Jensen’s inequality, . Thus log 0
for all , so that 0. Now substitute 0 in (1.10b) to obtain

0 log 0 log 1 0

(iii) Clearly, log is continuous is . Therefore is the supremum of
a family of continuous functions. By Exercise A.30 is lower semicontinuous.

Recall that, for and in and [0 ], the rate function for jump
Markov processes was defined through (5.2), (5.4), and (5.5);

1

sup

if is absolutely continuous,

otherwise.
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Exercise 5.11.

Corollary 5.12.

Proof

Lemma 5.13.

Proof

Exercise 5.14.

Lemma 5.15.

Proof
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k r t dt s k
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s

k r t

s
s

k r t dt s k
s

r t dt

s k
r s r

s

k r t

For each , is convex and lower semicontinuous, and

The function is strictly convex in . Therefore,
only at .

Let be a convex function. For all absolutely continuous, all
and all ,

If is , then equality holds if and only if is a constant.

If indeed is the rate function in the sense of Theorem 5.1, then in particular by
Theorem 5.1(ii) we should have 0 where is the most likely path as
given in §5.1. In other words, solves (5.7).

Show that the definition of (and therefore of ) does not depend
on the choice of coordinates. That is, make a linear transformation , where
is a nonsingular matrix. Define for the process in the new coordinates. Show

that, if and then .

0

. Using Exercise 1.25 or the argument of (5.3), for each fixed this is a
statement about the rate function of a multidimensional Poisson random vari-
able. Therefore the corollary follows from Proposition 5.10.

0

. Recall Definition A.42 and the remark following it. In particular, we need
to consider only the case where at least one is not zero at , for otherwise

for all 0 , in which case strict convexity holds trivially.
The strict convexity is the subject of Exercise 5.27. The second claim follows
from Corollary 5.12, strict convexity, and Theorem A.48(ii).

If solves (5.7), then 0. If (5.7) has a unique solution
and 0, then (for almost all ). Hint: if solves (5.7),

then . For the converse use strict convexity.

0

strictly convex

. From Jensen’s inequality,

1 1

0

and, if is strictly convex, equality holds if and only if is constant.
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Lemma 5.16.

Proof

Lemma 5.17.

Proof

Lemma 5.18 .

1

locally, the cheap-
est way to get from point to in a fixed time is by a straight
line.

x r
T
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r
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r r T r r t
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x y C y y
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#( , ) ( ( )/ ) λ,
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( ) ε > δ

,

, , , . . . , δ,

δ
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! ! ! ! !
! ·
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Lemma 5.16 is more important thanmight appear. It implies that
0

Here, “locally” means that is independent of the position, and “cost” is in
terms of the rate function . When can vary, this result may not hold.

0

0

. Since the are constant, , and hence , are independent of .
By Lemma 5.13 the function is strictly convex. Now apply Lemma 5.15.

log

. For each , consider . With sup and
max , clearly

Define by log Then

log

which grows like log as .

(uniform absolute continuity)
0

[0 ]

[ ] 1

Assume the are all constant. Then for all absolutely con-
tinuous and all ,

where . Equality holds only if is constant. Consequently,
is minimized at a path that is a straight line.

If are bounded, then there exist constants and so that
for all and all ,

Assume the are bounded, let
, and fix some . Then there is a , independent of , such that for

any collection of nonoverlapping intervals in

with

with total length , we have

Moreover, we can find a constant depending only on and so that
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The positive cone generated by is

for some with

For any there is a so that any with can
be represented by a bounded vector with

and
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. Define the function to be equal to one if is in some interval [
and zero otherwise. Since is absolutely continuous, for any 0,

where, by Lemma 5.17,

inf : as

The choice 1 establishes the result, since

1
0 as 0

and depends on and , but not directly on . To prove the second statement,
note that

1

1

1

To proceed further we need some geometric definitions and facts.

: 0

0

0
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In fact, we can choose for some constant .

Assume the are bounded. Given any , there exists a
constant so that for all with ,

implies for all

. By contradiction. For any , choose a representation that is minimal in
the sense that

0 implies max max

(a minimal representation exists owing to continuity and compactness). Assume
the lemma does not hold. Then there exists a sequence with 0 so that
for the minimal representations,

and max

By taking subsequences if necessary and rescaling, we may assume that the co-
efficients converge, say as , and that, in addition, the minimal
representations satisfy

max 1 1 1 2

Thus max 1. Taking limits, since 0 we obtain

0

But since the coefficients are all non-negative, the convergence implies that
2 for all and all large enough. So

2

But this implies that was not a minimal representation. This contradiction es-
tablishes the first claim. The choice then establishes the last claim.

Define

1 5 16

and let have the representation , with positive .
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Moreover, if is a maximizing sequence, i.e.,

and if for some we have

then, necessarily, in every representation of .

θ , θ , . . .

#(θ , λ( ), ) #( , ),

θ , ,

λ ( ) >

θ

θ , ,

θ ,

, > , v

v θ
#( , )

λ >

λ
λ

λ.

λ λ ( ) λ λ ( )

θ , λ ( ) θ, λ ( )

λ
λ ( . )

.

#(θ , λ( ), )

θ , >

#(θ , , ) θ, λ ( )

λ ( ) θ,

λ θ, .

λ >

! !

! ! ! ! = ! !

〈! ! 〉 = −∞

= !

!
{! } !

{! } 5=

〈! ! 〉 →

! 〈! ! 〉
! !

〈! !〉 〈! ! 〉 ≤ !
! ! = ! − ! ! = ! → ∞

! ! = ∞

− − = − +

= ! = !

〈! !〉 − ! − = 〈! ! 〉 − ! −

≤ +

=
! ! ! ! ≥ −

≤ ≤ 〈! ! 〉

≥ ! ! ! − 〈! ! 〉 − ! −

≥ − + ! − − 〈! ! 〉

≥ − − 〈! ! 〉 −

− − +

lim

lim inf

0

The lemma implies that whenever is in the positive cone generated
by those for which 0, we can choose a maximizing subsequence of

so that 0 implies that

with bounded uniformly over compact sets, and moreover exp con-
verges for all . Note that if is not in the positive cone, then there is a with

0 while 0 for all ; e.g., take to be the closest point in the
cone to , and choose . Choosing with shows that, in
this case, .

. By elementary calculus, for 0,

sup 1 log

Let sup and inf . By Lemma 5.20,

1 1

log 5 17

Now since 1, from the argument of (5.17) we have, for any
1 for which 0,

1

1 1

1 1

Now choose large enough so that

1 1
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Assume the are bounded. Then is bounded for
in bounded subsets of , uniformly in . Moreover, for each , is continu-
ous as a function from to .

〈! ! 〉

〈! ! 〉 → −∞ ! ! ! ! → −∞

! ! ! !
! |!| !

|!|

! ! ! !
! ! ·

! ! ! ∈ |!| ≤
! = ! | | ≤

〈! ! 〉 ≤

! ! = 〈! ! 〉 − ! −

≤ +

{! }
5=

!
!

! ∈ ! ∈
! = − ! {! ! } !

! ! + ! ∈ ! = !
! ! = ! ! = =

! !
!

! = ! + ! ! ≥ =

! + ! ∈
{! = } { } |!| ≤ |! − !|

! ! ≤ − ! ! + ! ! + !

and the first claim follows. Moreover, since are bounded above for all ,
if 0, then

implies

We next establish that in order to obtain a nearly optimal for , it
suffices to consider in bounded sets. The bound on is independent of in
, and depends only on . But first, a technical lemma.

log

. Recall that is non-negative. If and then, by
Lemma 5.20, we can choose a representation where .
By Lemma 5.21, along any maximizing sequence. Therefore

sup 1

and so is bounded on bounded subsets of . The result follows from this, Corol-
lary 5.12, and Theorem A.45. But let us provide an explicit proof (essentially the
same proof is used to establish Theorem A.45).
Assume, without loss of generality, that the collection spans , for other-

wise the discussion can be reduced to lower dimension. Assume also that ,
since otherwise is obviously continuous (although the argument below covers
this case, mutatis mutandis). Now by Corollary 5.12, is (for each ) convex and
lower semicontinuous in . Therefore, by Exercise A.30 it suffices to show that
it is also upper semicontinuous at each point . So, fix a point . Define

so that the positive cone of equals . Let be the closest
vector to such that for some 0 small enough and set .
Note that if is in the interior of , then , while if 0 then 0, and
if is on a lower-dimensional face of the cone, then the requirements makes
parallel this face. With this construction, every point in can be represented as

0 0 1

and for each . Moreover, by Lemma 5.20 (applied to the new collec-
tion 0 1 ), we can choose the so that . By
convexity of ,

1
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Assume the are bounded. Then for each and
there exists a bound so that for all with ,
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λ ( ) ε >

#(θ , λ( ), ) #(θ , λ( ), ) ε.

ε

.

θ

δ

( , δ) δ ( , δ) , < < δ .

,

δ
# ( , δ)

δ

#( , v) #( , ( , δ)) ε/ v .

δ δ ε
δ

θ

#(θ , λ( ), ) #( , ) ε/

θ <

#( , ) #( , ) ε/

#(θ , λ( ), ) ε/

#(θ , λ( ), ) θ , ε/ .

( ) , < ( ) < δ

whenever is close enough to so that the sum of the coefficients is less then one.
Now take a sequence so that . Then 0, and so

lim sup

since is finite in . This establishes upper semicontinuity.

log 0

sup sup

. Let be given, and fix . Recall that consists of points of the form
with 0. Write : We shall find a finite

set of points , and show that those that are nearly optimal at these points
will work, in fact, for all points in .
Fix and for each define

and : 0 2

Then, since the span , the set is open, and it clearly contains . There-
fore the collection

is an open cover of the compact set , for each , and so we can extract a finite
subcover. Since is continuous and is compact, and since each is in ,
we can choose small enough so that

4 whenever

Choose smaller, if necessary, so that it also satisfies 8 . For this value
of , let be a finite cover with “centers” and “endpoints” .
For each , let be such that

4

and let max . Then for ,

4
2

2

Now, by construction,

where 0 2
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ε/ θ, λ, λ #(θ, λ, ) >

#(θ, λ, ) #(θ , λ , ) λ λ . ( . )

λ δ ε/

λ λ < δ θ
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#(θ , λ, )
ε

#(θ , λ , ) ε,

( . )

λ

( )

( )

# #

# # ( ) ( )

#

#

while the fact that makes larger than 4 implies, via Lemma 5.21, that
. This and our choice of now imply that

3 4

and the result is established for fixed.
This conclusion certainly holds for all so that . Since, by as-

sumption, we have the bounds 0 , it suffices to estab-
lish that can be chosen independently of : in fact, the proof will also establish
continuity in , uniformly in and . So, given , let be the bound at cor-
responding to 4. By Lemma 5.21, for any , and , if 1
then

5 18

Fix and choose so that the right-hand side of (5.18) is bounded by 4 when-
ever . Then for some ,

sup
4
2
4

sup
3
4

sup

5 19

where (5.18) was applied twice. But this implies that it suffices to obtain a bound
at a finite number of points , so take to be the maximum of at those points
and we are done.

The upper bound for closed sets will be established with the rate function ,
while the lower bound holds with a function defined below. Both are de-
fined by integrals, using the functions and , respectively. In this section we
show that , so that .
This equivalence has more than theoretical importance: one can use the dif-

ferent forms of the rate function to advantage in calculations. involves an ex-
tremum over , while involves an extremum over . Since usually ,
we can choose the smaller space for calculations. Moreover, as seen below, some
properties are more easily established in terms of one, but not the other.
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Define

log 5 20

: 0 5 21

inf if ;

otherwise .
5 22

if is absolutely continuous;

otherwise.
5 23

For each , the function of (5.20) is strictly convex (in
; Definition A.42) over the convex set . If dom (Defini-
tion A.37(vi)), then has a unique finite minimum point in . In
particular, this is the case if and 0 for all . Hint: show that it suffices
to consider the one-dimensional problem.

Recall the definitions (5.2), (5.5), and (5.16)

1

sup

if is absolutely continuous,

otherwise.

0

. Assume first that 0 for all . Then

log

log 1
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where and , and log 1. But
0 since, for each , it is minimized at and 0. If

0 for some , then the corresponding term is strictly positive.

sup inf : 0

. By Lemma 5.22, if and only if can be written as
for some non-negative constants , while the same is true for by

definition. Thus we need to consider only the case where both are finite. By
Lemma 5.25, it suffices to produce and with , and
with . Let be a maximizing sequence for . By
Lemma 5.21 and the remark following the lemma, we may assume that, for each
,

as , where the are finite. Therefore

1

Now

Hence converges as . But since is a maximizing se-
quence and is finite, the limit must be zero.
Now define

1

Then lim by direct substitution, and

lim lim 0
5 24

so that satisfies the constraint .

Here are a few consequences.
The function is strictly convex in (Definition A.42 and

following remark). Hint: the case 0 is immediate from the definitions.
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Exercise 5.28.

Exercise 5.29.

Exercise 5.30.

Exercise 5.31.
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λ λ ( )

θ

θ #

λ .
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( / ) , ( / ) ,

λ # #
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( ) < ∆ ( ) ( ) >

( ) ( ) ∆

Otherwise, suppose that strict convexity does not hold, so that there are
and 0 1 with

1 1

Then

sup 1 5 25

sup 1 5 26

sup sup 5 27

Therefore a maximizing sequence for (5.25) must also be maximizing for (5.27).
Now use (5.24) to conclude .

The proof above used the specific structure of . In general, the
conclusion will be slightly weaker. Recall Definitions A.37–A.42. Let be con-
vex and differentiable on . Then is essentially strictly convex. In our case
this implies strict convexity in the interior of . Hint: use and Theo-
rems A.40–A.43.

Let be positive. Then the numbers of Theorem 5.26
are unique. Moreover, 0 for all if and only if there is a unique finite , and

0 if and only if 0. Hint: see Exercise 5.24 and Theorem 5.26. Or use
Lemma 5.25, let be a maximizing sequence for , and let be a minimizing
sequence for with , and observe that

lim 0

Show that if we adopt the natural convention that, for 0,

log 0 and 0 log 0 0 0

then the conclusions of Theorem 5.26 and Exercise 5.29 remain valid even if some
of the are equal to zero. Conclude that both and are the same as those ob-
tained if we delete all jump directions for which 0.

If , then each increment , , can
be represented as
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Proof
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If the are bounded then there exist and so that for
all and all ,

if ,
if .

Assume the are bounded and continuous. Then for any
, the functions and are continuous in , uniformly in in
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for some positive . Hint: recall Definition 5.19 and observe that

and 0

since is absolutely continuous and by assumption, respectively.

log

log

. Let be a bound on log . By the definition (5.22),

for any , and by Lemma 5.20 we can choose so that .
By (5.20),

1 log

log

The bounds follow since log is continuous and unbounded.

log

:

. This actually follows from the first two inequalities in (5.19) of the proof
of Lemma 5.23, but here is another proof using the second representation.
By definition, if for any , the rate . By Lemma 5.20,

there is a constant so that for any in there exists a with .
Therefore, in computing for any , we may restrict our attention to such
that .
But, by definition, is continuous in , uniformly in .

Therefore, for all and any with ,

Now choose so as to (nearly) minimize to establish that
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Exercise 5.34.

Theorem 5.35.

Proof

1 1
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Assume the are bounded and continuous. Fix
with . For any , there exists a so that

implies

x x x y S
x y x y

x
B x y x B

y y B

x B x
I

x r
C T I r

q t r t q t r t dt I r

x y y I r
t r t B B B

q t r t r t B dt C r t r t r t B dt

C
C

r t r t r t B dt

B

B B I r B
B B C C

x x
x y x y

T
y y B x x

x x r t

q t r t dt r t r t dt

! |! − ! | ! ∈
˜ ! ! − ˜ ! ! ˜

!
! ! |!| ≤

! ∈ |!| ≤
♠

|!| ≤ !

! ! ∈
! ∞

|! − ! | ! ! − ! ≤

˜ ! ! = ∞ ! 5∈ !
! 5∈ ≥ { }

! ! ! ≥ ≤ |! | |! | ! ≥

≤ ! ! ! ≥

=

→ → ∞ !
≤ ≤

|! − ! | ≤
| ˜ ! ! − ˜ ! ! | ≤

! |!| ≤ ! !

! |! − ! | ≤

! ! − ! !

δ

#( , ) #( , ) # #

#

λ ( )
#( , )

λ

λ ( )
, ( ) < ε > δ

( ) ( ) < δ #( ( ), ( )) ( ) ε.
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( ) ,

#( ( ), ( )) ( ) ( ) ( ) ( )

#( ( ), ( )) ( )

ε( ).

ε( ) ( )
ε( ) ε/ ε( ) / ε/ δ

δ

#( , ) #( , )
ε

,

( ) δ .

#( ( ), ( )) #( ( ), ( ))

where depends only on and but not on . Repeat the calculation
for and the result for follows. The same holds for since, by
Theorem 5.26, the functions are equivalent.

Putting together Lemmas 5.22 and 5.33, we obtain a stronger continuity prop-
erty for .

Assume the log are bounded and continuous. Then for any
, the function is continuous in both arguments, uniformly in

and with . Hint: use the triangle inequality and a compactness
argument.

Note that the result of this exercise holds if the conditions on log are satisfied
for . If they are globally Lipschitz, then the uniformity is for all . We can
now establish a “continuity property” for , which is useful for approximations.

log
[0 ] 0

sup

. Note that since for and is finite, we can ignore
any point for which . By Lemma 5.32 and 5.17, for max ,

log

By Lemma 5.18, we have 0 as since is finite. Fix so
that 4 and also 4. By Lemma 5.33, there is a so that
if , then

2
for all with and all in the compact set

: inf

Therefore
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Definition 5.36.

Definition 5.37.

Definition 5.38.

Lemma 5.39.

Proof

Lemma 5.40 .

Remark.

Proof

ε
$( ( ), ( )) $( ( ), ( )) ( )

ε ε
.

( )

( , θ) λ ( ) .

$ ( , ) θ , ( , θ)

( ) $ ( ( ), ( ))

λ ( )

$ $ ( , )

( )

λ ( )
$ ( , ) (δ, , )

$ $

(δ, , θ) θ, λ ( ) . ( . )

(δ, , )

θ

.

if is absolutely continuous,
and is defined to be infinite otherwise.

Assume are bounded. Then the conclusions of Lemma 5.17

and Lemma 5.18 apply to and ; that is, grows faster than
uniformly in , and the functions

are uniformly absolutely continuous.

If are bounded and continuous, then
the function is lower semicontinuous in .

2
4

2 2
Semicontinuity is used extensively in the theory of large deviations (it is also

used extensively in convex analysis, which is a closely related field). We remind
you that a function is lower semicontinuous if can only jump down. We
shall need a fairly general setup for the upper bound, showing that the approxima-
tion methods we employ preserve lower semicontinuity. Some of the definitions
below are somewhat complicated by the desire to make them generalize to more
complicated processes. This will become clear in Chapter 8.

sup 1

sup

log

:

. Identical to the proofs of Lemma 5.17 and Lemma 5.18, respectively.

Lower semicontinuity

We clearly have , so ; this would seem to make semicon-
tinuity difficult to show. Nevertheless, here is the

. Define

sup 1 5 28

In Exercise 5.41 below it is shown that is jointly continuous in , for
each . The result is now a consequence of Exercise A.30.
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If are bounded and continuous, then is lower semicon-

tinuous (in the metric). The same holds for .
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δ
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If the are continuous then of Equation (5.28) is continuous
in . Consequently, is right-continuous in , i.e.,

lim

uniformly over in bounded sets. In particular, as
0. Hint: is decreasing in . It suffices to show continuity in uniformly in

, and continuity in .

. We clearly need to consider only sequences of absolutely continuous func-
tions. By Lemma A.62, we can use either of the metrics or : we shall use the
latter. Let be a sequence of functions in [0 ] converging (under ) to .
We may assume that is bounded, say by the constant . By Lemma 5.18,
the functions in the set are uniformly absolutely continuous, and therefore
is also absolutely continuous. Therefore, given we can partition the interval

[0 ] into intervals [ each of length , such that

max sup

for all . Then, by Definitions 5.36–5.37 and Lemma 5.15,

Define the function by

for

and let (we have omitted the dependence on from the nota-
tion). By the previous calculation, for each and ,

lim inf

Now choose a sequence of nested partitions, say 2 , so that 2 ,
and a corresponding sequence that converges to zero. Then

and as 0
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Assume the are bounded and continuous. Then for any
with and any , there exists a step function so that

Similarly, if , then there exists a step function so that
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since is absolutely continuous, and for (almost) every [0 ] as ,

Since is non-negative, Fatou’s Lemma Theorem A.93 and Lemma 5.40 imply

lim inf

lim inf [ ]

This establishes the lower semicontinuity. The proof for is identical.

log
0

. Since and since for all , Lemma 5.18
implies that, for large enough,

4

Choose 0 whenever or . Let sup
which is finite, since is continuous. By Lemma 5.23, for large enough

sup
4

for all in and all with . But on the bounded set
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Definition 5.44.

Definition 5.45.

Proposition 5.46.

Proof
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If the are bounded and continuous, then

and

are compact sets in , for any compact .
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the function is uniformly continuous. Therefore there exist a 0 and
a finite collection so that

2
whenever

Define the function

whenever

with some tie-breaking rule. The function is a simple function: it takes a finite
number of values. However, it may not be constant on . So we
approximate by a step function. Choose so that

[ ]
4

whenever the set has measure (length) less than . By [Roy Prop. 22 p. 68] we
can indeed approximate by a step function , so that the functions agree outside
a set of measure . Collecting all approximations gives the result. The proof for
is identical.

[0 ] : 0

[0 ] : 0

Now let be any compact set in .

[0 ]

. By the Arzelà-Ascoli Theorem A.51, a set in [0 ] is pre-compact
(i.e., has compact closure) if and only if the functions in are equicontinuous,
and the set 0 : is compact. By assumption, , a compact set.
By Lemma 5.18, the functions in these sets are equicontinuous. By Lemma 5.42,

is lower semicontinuous, so that by definition, the limit of any convergent
sequence satisfies , and 0 ; therefore the set is closed, and
compactness is established. The proof for the second set is identical.

This compactness allows us to obtain a further semicontinuity property. The
large deviations upper bound is of the form

inf : 0
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If the are bounded and continuous, then for each closed set
, is lower semicontinuous in .

Let be compact in , and assume the are bounded
and continuous. Given and , there exists a such that

for all (here ).

[0 ]

. We need to establish that if and lim inf , then
. By Proposition 5.46, for any positive and , the sets

and

are compact (intersection of compact and closed sets). By definition they are non-
empty (for all large). By Lemma 5.42, is lower semicontinuous, and so
by Theorem A.31, there are so that , at least for large .
Moreover, lies in a compact set, so there is a convergent subsequence of
with a limit, say . Since is closed, , and clearly 0 . Since is
lower semicontinuous,

lim inf

We now estimate how well approximates .

log
0 0 0

:

This means that cheap functions in the sense are very close to equally cheap
functions in the sense.

. By contradiction. Choose

0 0 1

If the claim is false, then we can make these choices so that

for all

Since increases as 0, the are contained in the set

which is compact by Proposition 5.46. So, take a subsequence converging to a
function . Now Definitions 5.36–5.38 imply that for any path , if then
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Corollary 5.50.

Proof
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Assume the are bounded and continuous. Then, for
each , is a good rate function on .

Assume the are bounded and continuous. Then, for
each , is a good rate function on under either
the metric or .

This and Lemma 5.40 give, for each ,

lim inf

lim inf

Now the monotone convergence theorem A.91(ii) gives

lim

Now fix (to be chosen later) and set

5 29

so that 0 . Then since is continuous and , by Theorem 5.35,

where 0 as 0. Thus, for large enough, , so
while , a contradiction.

log
[0 ] : 0

. Since is non-negative, is non-negative and, by Lemma 5.42, it is
lower semicontinuous. By Proposition 5.46, its level sets are compact.

log
[0 ] : 0

. Since is finite only for (absolutely) continuous functions, it suf-
fices to consider only sequences in [0 ]: but limits of such sequences un-
der either metric are continuous (cf. Theorem A.58). Moreover, in this case con-
vergence under is equivalent to convergence under (Lemma A.62). Thus
is lower semicontinuous. The level sets consist of paths in [0 ] and, by

Proposition 5.49 are compact in [0 ] . By A.60 they are thus compact
in [0 ] and in [0 ] .
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In this section we present and prove the lower bound. There are no new ideas here,
but there are manymore technicalities than appear in Chernoff’s Theorem. To cal-
culate the probability that the jumpMarkov process is near some continuous
function , we perform the following steps (whose details form the body of this
section):
1) Approximate the path by the “fluid limit” path of a new jump
Markov process, with new jump rates that are constant on all intervals of
time;

2) Write the change of measure formula for jump Markov processes;
3) Prove that in the limit this formula becomes simple; and
4) Prove the lower bound for and using Kurtz’s Theorem.
We show in Theorem 5.26, §5.2 that the lower bound matches the upper bound.
Consider the processes with jump directions , and two measures and
. Under (respectively ) the process has jump rates 1
(respectively 1 ) over a time interval [0 ]. We know
from (4.19), or Theorem B.6, that (for each )

exp

log 5 30

Here is the total number of jumps (transitions) the process makes in [0 ]
and is the time of the jump, so that is the state of the process just
before the jump. Finally, denotes the directions of the jump, i.e.,
implies .

Strictly speaking, (5.30) describes the Radon-Nikodym derivative of
restricted to the process , with respect to restricted to . To avoid cumber-
some notation, we shall be cavalier about this. This same comment applies to the
definition of below.
Let us first reduce the lower bound to a simpler calculation: the probability that

the jump Markov process is near some continuous function . Suppose
we have an open set [0 ] with

inf

Then we can find a function with , so that is necessarily
absolutely continuous. Then since is open, by Definition A.7 the set

[0 ] : sup 5 31
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satisfies for all small enough. Therefore,

for all small enough. So, to prove a lower bound on , it suffices to prove that

lim lim inf
1
log 5 32

Here is the idea behind the proof of this inequality. Define by

Exactly as in Chernoff’s Theorem, we use a change of measure:

exp
1

5 33

by version (A.11) of Jensen’s inequality. Now, as in Chernoff’s Theorem, sup-
pose that we arrange things so that 1 as . By Kurtz’s
Theorem, this amounts to having under , i.e.,

5 34

If 1 then by (5.33),

lim inf
1
log lim inf

1
5 35

This holds for every , provided the constraint (5.34) holds. Therefore, to get a
tight lower bound our problem is reduced to calculating

sup lim inf
1

: 5 36
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Assume that for each , the function is bounded and Lip-
schitz continuous. Let be an open set in . Then

uniformly in over compact sets.

where the jump rates determine . It is more convenient to do the computations
in terms of as defined in (5.23): in §5.2 we showed that .
With this orientation in mind, we proceed to the proofs. Recall the defini-

tions (5.20), (5.22), and (5.23) from §5.2,

log

: 0

inf if ;

otherwise.

if is absolutely continuous;

otherwise.

The main result of this section is the following theorem.

log
[0 ]

lim inf
1
log inf : 0

By the discussion following (5.31), it suffices to prove that for any path
with 0 and and for any 0,

lim inf
1
log sup 5 37

uniformly over in compact sets.
Note that since is continuous, the set is open in [0 ] .

Let be the distribution that corresponds to the same jump directions , but
with constant rates (the reason we choose constant rates is discussed below
the proof of Corollary 5.53). We write for the expectation with respect to ,
and write for the deterministic limit of under with initial condition

0 [see Kurtz’s Theorem 5.3 and Equation (5.7)]. Define

[0 ] : sup
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Denote by the number of jumps of during . Then for
any bounded continuous functions and any ,

where the convergence is uniform in over bounded sets.

The heart of the proof of Kurtz’ Theorem is Lemma 5.52, where the limiting form
of the change of measure formula (5.30) is established. To establish the appropri-
ate limit of the (logarithm of the) function on the right-hand side of (5.30), we
derive a limit formula for general functions 1 .
With the notation of (5.30), we have

[0 ]
1 0

lim
1

lim
1

The middle term here appears in . The lemma states that
the expectation has a straightforward limit, reminiscent of Kurtz’s Theorem 5.3.

. Fix a direction and let be a Poisson random variable with rate .
Then for all ,

1
[ ] 5 38

However, is also a sum of i.i.d. Poisson random variables with rate . By
Chernoff’s Theorem and the calculation in Example 1.13,

5 39
for all , where as . This establishes that the ran-
dom variables have uniformly bounded second moment (in fact, they have
uniformly bounded moments of all orders). In particular, by Definition A.94 and
Exercise A.96, they are uniformly integrable and, by (5.38), so are the normalized
number of jumps in direction . Since by Kurtz’s Theorem 5.3,

1 as 5 40
we conclude from the comment following Definition A.94 that if one of the limits
below exists, then indeed

lim
1

[ ]
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Now since (5.41) holds for all and the are bounded, the first equality of the
lemma follows, where the uniformity in is inherited from the uniformity in
Kurtz’s Theorem 5.3 and (5.38).
To prove the second equality, assume first that are constant (i.e., independent

of ). By Theorem 4.5 the number of jumps makes in each direction is an
independent Poisson random variable, so

1
5 42

which completes the proof for constant functions.
To deal with general , we approximate by Riemann sums. We start by re-

stricting attention to :

1
5 43

1

1
5 44

The last term tends to zero as since are bounded and, by Kurtz’s The-
orem, 1. These facts and the argument in (5.41) imply that
the second term on the right of (5.44) tends to zero as as well. Both con-
verge uniformly in over bounded sets. We now estimate the first term on the
right of (5.44).

Divide the interval [0 ] into subintervals of length , and for each
and 0, define

: for some 5 45
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Since by (5.7) the path is linear on [0 ] and since are continuous, for any
0 we can choose large and 0 small enough so that

sup inf 5 46

for all . It will be convenient to choose the value of as ; this is without
loss of generality since we have already established that the limits are independent
of the value of . ByKurtz’s Theorem 5.3 and the hypotheses, these choices can be
made uniformly in in bounded sets. Consider now the first term in (5.44). Since
we are on the set , we can replace each with , and
the resulting error satisfies

by virtue of (5.46) since . Now break the first sum on the right of (5.44) into
the time intervals. Fix and let denote the number of jumps of in di-
rection during the interval. On that interval we have by (5.45) and (5.46)
the following upper and lower bounds

1
5 47

1

1

But as in the proof for the constant functions,

1

Therefore

1
0

as . Hence the first sum on the right of (5.43) can be approximated by

with an error that is linear in . Taking we obtain upper and lower Rie-
mann sums for the integral in (5.43). Now can be made arbitrarily small by
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Assume the are constant and that the are bounded
and continuous. Define through (5.34). Then

and the convergence is uniform in over bounded sets.

taking large and small, and this uniformly in over bounded sets, which con-
cludes the approximation.

We can now compute a lower bound on the probability that the process
follows the “fluid limit” of the twisted process. Recall the definition (5.20) of

, which is repeated above Theorem 5.51.

log

lim inf
1
log

. Since 1, we have log 0.
So, by Equations (5.30) and (5.33),

lim inf
1
log

lim inf

lim inf
1

log

Now note that if, for some , the rate is zero, then under no jumps in that
direction occur, so that the last term is well defined. In fact, we can simply omit
all zero rates from the formulas. But then the convergence of the first term on
the right follows from Kurtz’s Theorem 5.3 due to the continuity of the . The
convergence of the second term follows from Lemma 5.52, with

[ 0] log

Using the definition (5.20) of , the result follows.

It is only for this corollary that we need the log bounded and contin-
uous. All other results only require the to be bounded and continuous.
To complete the proof of the lower bound, we would like to set .

This involves finding a nicely behaved set of rates so that
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and extending Lemma 5.52 and Corollary 5.53 to non-constant rates . Although
it is possible to extend the results to rates that are bounded and Lipschitz
continuous (Definition A.25), there are two problems here. One is that we do not
have much control over the smoothness of , so that it is impossible to guaran-
tee that the are smooth. For example, choose only absolutely continuous, but
not continuously differentiable. If were continuous, then the ODE (5.8) would
imply that is continuous, which is a contradiction.
The other problem is that may cross the same point at two different times

with two different derivatives, meaning would have to take two
different values. We get around both of these difficulties by discretizing [0 ]
into intervals, and taking to be constant on each interval. It is then a trivial
matter to construct on [0 ] by piecing it together from its piecewise linear
parts on the intervals [ ]. Similarly, all other estimates will be
pieced together, and the lemmas that assumed smoothness will be applied on these
subintervals. For the purpose of the proof, we will not need these approximating
to converge, and indeed in general they do not.

For a given , define and let . On each interval [ ]
[ 1 ], define . Take 1 so
as to satisfy

5 48

Note that such a choice of is possible provided is in the positive cone
generated by the . If it is strictly outside (say, distance ), then

inf
2

0

for all . We show below that in this case, , so that the lower bound is
trivial. To this end, it is convenient to use the fact, established in Theorem 5.26,
§5.2, that [Equations (5.20) and (5.2)].
Recall that is a solution of (5.7) (with replacing on the appropriate

interval), hence it is piecewise linear. By construction,
for all , and therefore for any we can choose large enough so that

sup
2

5 49

. If then there is nothing
to prove. If it is finite then, since is continuous, Theorem 5.35 implies that for
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any we can choose large enough so that
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where Lemma 5.16 implies the last inequality. Now defined in (5.48) is clearly
in , where . By the definitions (5.20)–(5.22) of and we can
choose so that

Thus

2 5 51

Since by (5.49)
sup

2
we have, by the Markov property,

sup sup
2

sup
2

1

inf sup
2

where is the set of initial conditions

:
2

1

But for ,

sup
2

sup [ ] [ ]
2
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Let the be bounded and Lipschitz continuous in , and
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Therefore, applying Corollary 5.53 over the interval [ ], we obtain

lim inf
1
log sup

lim inf
1
log sup

2
1

Iterating this argument, we obtain by (5.51)

lim inf
1
log sup

2

Since is arbitrary, the proof is complete.

In this section we establish an upper bound for closed sets of paths. Conceptually,
the upper bound is more difficult than the lower bound. This is because the lower
bound is established by estimating the probability that the scaled process is
close to a particular path . For the upper bound, though, we have to estimate
the probability that is far from of paths. This conceptual difficulty is
reflected in a more complex proof. Paradoxically, the upper bound can be estab-
lished (at the present time) in greater generality than the lower bound* (i.e., for a
wider class of processes).
Here is a statement of the theorem we will prove below.

log
[0 ]

lim sup
1
log inf : 0

This estimate holds also for nearby initial points; see Theorem 5.64.
Since 0, there is nothing to prove if , so below we exclude

this case. Most proofs of upper bounds follow a standard sequence, which we now
outline. First define the set of “cheap paths”

:

* This situation is unlikely to persist, in our opinion, and simply reflects the rel-
ative youth of the theory of large deviations as applied to jump processes.



1+j
j

115

( ( ))

0

0

0

0

0

1

1

P

P

P

P P P

P P

E

( )

( δ)

κ

( δ)

− +

− +

"
≤ ≤

−

− −

+

+

Section 5.4. THE UPPER BOUND: ORIENTATION

c

n
c nK o n

d
c d

n
T

n
n

n n

n n
n K

t T

n

T
n

n

T

c

n n n n

n n
T

n
n K

n
j j n

n j
n n

i n j j i n j

i

t
t n

∩ = ∅ ⊂

# ∈ ≤

# # = ∞
#

# #

# #

# # = |# − # |

#

# ≥ ≤

⊂ {# # − }

= −

# ∈ ≤ # − + # #
≤ # # + # ≥ −
≤

#
≤ ≤ − #
# { }

# #

# #

#

˜ # ≤

K K F F K

z K e

D T
K D T K

z I z
z T

y z

d z y e

n d x y x t y t

y

I y e

I

K r d r K

K

z F d y K d z y
d z y I y K
e

y T J
t t j J y t

z t
z t y t

J

z t t t z t

e

nI y C

(( ) ( ( )

( ( ( )) ,

,
( ( ) , (( )

( )
,

( ( , ) > ε) < ( . )

( , ) ( ) ( )

κ

( ( ) κ) . ( . )

δ >
ε

( ( ) ( , (( δ)) > ε .

κ δ

( ) ( ( , (( δ)) > ε) ( ( , ) > ε)

( ( , ) > ε) ( ( ) δ)

.

,
, ) ( )

( ) ( )

λ ( ( )) , ) λ ( ( ))

( ) ,

Take the largest so that , or . If we could show that

then we are done [since our basic space of paths is the space [0 ], the set
contains, by definition, those paths in [0 ] that are not in ].

However, this cannot be true; for is not continuous, so that (unless
is constant on [0 ]).
To resolve this difficulty, all proofs we know construct a random piecewise lin-

ear path which is close to in the sense that

5 52

for all large. The notation sup is used, with the
obvious extension to a distance between a path and a set of paths. The key property
of , the derivation of which is described later in this section, is that for all ,

5 53

Now one shows a continuity property for , namely that for any 0, there is
an small enough that

:

Hence from (5.52) and (5.53) (with ),

2

This proves the result.
Construction of the random path is easy. Divide [0 ] into intervals

[ for 0 1, and let be the piecewise linear function
that agrees with at the endpoints . The same sort of estimates used to prove
Kurtz’s Theorem are used to show that and must be close in the sense
of (5.52), at least if is large enough. Now the whole difficulty is in establish-
ing (5.53). Here is where the proof we use differs from “standard” proofs.
In most proofs, one shows (5.53) by an explicit calculation. First approximate

the coefficients on the interval [ by constants . This
new process, with constant coefficients, has a Poisson distribution for the number
of jumps in each direction . Therefore we can obtain explicit estimates for this
process. Using the exponential martingale (as in Chernoff’s Theorem 1.5 and in
Kurtz’s Theorem 5.3) we can establish that

exp
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where is calculated using the constant coefficients. Then by taking , the num-
ber of intervals in the definition of , to be , we obtain by the Markov prop-
erty

exp

Hence from Chebycheff’s inequality,

exp

Now another estimate shows that , completing the proof.
The problem with the proof as outlined above is that it seems to depend in a

critical way on the fact that is a constant coefficient process. Our ultimate goal
is to treat queueing processes, where boundaries occur naturally (since all queue
sizes are, by definition, non-negative). A typical one-dimensional queueing pro-
cess would have service rate when 0 but service rate 0 at 0. Clearly,
when the queue is nearly empty it cannot be approximated well by a constant co-
efficient process. In order to be able to extend the proofs below to cases with dis-
continuities of this sort (rather than start anew), we take a different approach. This
approach is useful in Chapter 8, where proofs of upper bounds for different pro-
cesses are nearly identical to the ones in this chapter.
We therefore follow the line of reasoning of [DEW], which does not introduce a

new process. The estimation of exp is done by finding an

, which corresponds in some cases to a constant coeffi-
cient process, but is sensitive enough to estimate correctly the effect of the bound-
ary in many cases. We also choose a very fine partition for the definition of ;
in fact, we choose . This requires us to show that

log exp

for each provided is large enough, so that (by the Markov property)

exp exp

for large. (In fact, we show 0 suffices.) This follows by an argument due
to Dupuis and Kushner [DK2].
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If the are bounded, then there are positive constants and
, independent of , such that for any ,

The piecewise linear interpolation of :

exponentially close

Assume the are bounded. Then for each we have,
uniformly in ,

We have already indicated that we estimate the probability of a closed set by
estimating the probability of , where is chosen just small enough that

( [0 ]).
We rely heavily on the following simple consequence of Corollary 5.8, of §5.1.

0

sup exp log

. For 0 the result follows after simple algebra from Corollary 5.8 and
the estimate (5.10), by replacing the interval size with . The result for 0
follows by a smoothing argument from the uniformity in , due to the Markov

property.

As in the case of the lower bound, it will be convenient to partition the time
interval [0 ] into small pieces. So, given , define

0 1 5 54

1

In the nomenclature of large deviations, the following result shows that is
to .

0

lim sup
1
log

. This follows from Corollary 5.55 with . Consider some interval
[ ]. Since and agree at the endpoints of these intervals, clearly

2
implies

2
On the other hand, from the triangle inequality,



K

K

118

+

+

+

+

1

1

1

1

P

P P

P

P

R

P

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

Remark.

Lemma 5.58 .

th

1 3

3 2 1 3

1

0

1

0

1 3

1 3

0








( ( ))

∑








∑








( )

( )

( )

≤ ≤

#
≤ ≤

"

#
−

=
#

≤ ≤

−

=
#

≤ ≤

∞

"
#∈

→∞
#

Chapter 5. LARGE DEVIATIONS FOR PROCESSES

n n
n
j n

n
j n n

t t t
n n

n
j

x
t t t

n n
n
j

x n n

n

j
x

t t t
n n

n

j
x

t t t
n n

n
j

n

n

r F
T

n n

i
d d

n
x n

# # = # |# − # |

|# − # | ≥

|# − # | ≤ −

= #

# # ≤ |# − # |

≤ |# − # |

≤ −

# # ≤ −

= #

# {# }

# ⊂
∞ ⊂

# ∈
# .∈ ≤ −

y y t z t z t y t
t j

z t z t

z t z t n
c n c

c c T c c x

d z t y t z t y t

z t z t

n n
c n c

c c

y t J

d z z d Jn

J K I r

K

y y

x C
B C T

x C

n
y B

( ) ( ) ( ) ( ) > δ

( ) ( )
δ
.

( ) ( ) > δ/
δ δ

,

/

( ( ( ), ( )) > δ) ( ) ( ) > δ

( ) ( ) >
δ

δ δ
.

( )

( , ) >
δ

( η )

η

η > ( ).

λ ( )
< ,

.

exponentially tight

Assume the are bounded. Let
be a compact set. For each there is a compact set such

that for all ,

since is piecewise linear and . Therefore if
for some in the interval, then we must have

sup
2

Applying Corollary 5.55,

sup 2 exp
2
log

2

where . Since the constants and do not depend on ,

sup

sup
2

exp
2
log

2

The result follows since and are positive.

Standard constructions of the process use a fixed number of
intervals, chosen large enough that the estimate

2
2 exp log

holds for some positive , and

log inf

We follow the recent trend and estimate all values of simultaneously.
Our first key observation is that, with exponentially high probability, the pro-

cesses stay in compact sets: in the nomenclature of large deviations, is
.

(exponential tightness)
[0 ]

lim sup
1
log
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. We construct an explicit sequence of compact sets that will be used in the
remainder of this section as well. Define the (global) modulus of continuity of a
function by

sup : 0 5 55

Now define

[0 ] : 0
1

log
5 56

Each set in the intersection is closed, and so the set is closed by Defi-
nition A.1. The functions in are clearly equicontinuous, with uniformly
bounded initial values 0 , and therefore the set is compact by the Arzelà-Ascoli
Theorem A.51.
Now if 2 , then

1
2

since is piecewise linear. Therefore, to check whether is in , we only
need to consider a finite intersection, for values of up to

max
log
log 2

where is the smallest integer larger than . From Corollary 5.55 and a union
bound (Lemma A.115), for any and any with ,

1
log

sup
1

log

exp
log

log
2
log

using Corollary 5.55 in the same manner as in Lemma 5.57, with interval size
2 and 1 log . Thus

lim sup
1
log

log
for some positive constant , uniformly in .

The next step is the main local estimate for :

exp 0
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Once this key estimate has been obtained, we use a technique of Dupuis and Kush-
ner [DK2] to conclude that

The basic idea is

sup 5 57

so choosing a maximizing and using the exponential martingale (5.59),

exp exp

1 5 58

by the local estimate and (5.57). Hence

exp

by Chebycheff’s inequality. The technicalities are simply to overcome the vague-
ness in the appearing in Equations (5.57) and (5.58).

lim sup log exp 0

. As usual in upper bounds, the key is the exponential martingale. Since
, for any we have

1 exp 0 1

5 59
Now fix any with 2. Let

: sup
2
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Then since 0 for all and by Definition 5.36 of ,

1 [ ] exp 0

exp exp 0
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Hence

exp 0
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Let us estimate the last term: from Corollary 5.55,
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for all and with . Hence

exp 0 exp

where 0 as .

We can glean a little more from the argument. Notice that for all 0,

sup 1

sup
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For a set let .

Assume the are bounded and continuous. Let be
a compact set and fix a step function . For each and each compact set

of functions with ,

uniformly in , where

whenever is absolutely continuous, and is defined as otherwise.

Hence, without resorting to the set , we obtain

lim sup log exp 0

We use this crude bound below.
To establish the upper bound, we need the estimate

lim sup
1
log

By Lemma 5.58 we can essentially ignore paths outside , for large enough
values of . Our next step is therefore an estimate for subsets of . The next
two results follow an argument of Dupuis and Kushner [DK2] to knit together the
local estimates into a global one.

[0 ] : 0

0
0

lim sup
1
log inf

. Since is absolutely continuous by construction,

: absolutely continuous

while by definition,

inf inf : absolutely continuous

so that, without further mention, the discussion will be restricted to absolutely
continuous functions. For any 0 and 0, Lemma 5.59 implies that there
is an so that for all and all we have

exp 0 exp 5 60

uniformly in bounded [recall means 0 ]. Now assume for notational
convenience that the step function is right continuous (it is clearly bounded).
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For any function define the sum

The sum is clearly an approximation to , for a suitable choice of .
The Markov property of and (5.60) give us

exp
for all . Then since was arbitrary, we obtain

lim sup
1
log exp 0 5 61

uniformly over .
Since for we have

inf 0 so that exp inf 1

5 62
and so

exp inf 5 63

Combining this with (5.61) we have, uniformly over

lim sup
1
log lim inf inf 5 64

(We are not really giving up much here, in the “large deviations” sense. To find
the probability that you are in a particular set, you just have to look at the smallest
value of over that set.)
We now represent the sum on the right-hand side of (5.64) as an integral. Since
is compact, the functions are equicontinuous, and their values are

bounded. So, let be a compact set in so that
: for some and some 0

Now is a step function, so that it is constant on an interval, say [0 ]. But then
[with defined in (5.54)]

0 0 5 65

where arises since in general, may not match any of the . But goes
to zero uniformly in , since

0 sup
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Now is continuous, so it is bounded and uniformly continuous on . But the
functions in are uniformly continuous, so

goes to zero with , uniformly in and in . Therefore

0 5 66

with converging to zero uniformly for in . Repeating the argument on
the (finite number of) intervals on which is constant and using the uniformity in

, we obtain

lim inf inf inf 5 67

uniformly in . This together with (5.64) establishes the result.

log
0 0 0

lim sup
1
log

. We shall establish this result with and replaced by 2 and 2 . Pick an
0. For each absolutely continuous , let be the step function

of Lemma 5.43. We claim that there is a neighborhood of such that for any
absolutely continuous

2 5 68

To see this, let [ be an interval on which is constant and note that

since is absolutely continuous. Therefore the function is continuous
over absolutely continuous functions . The claim now follows from the definition
of in Lemma 5.43.
Since is compact, we can choose a finite subcover of balls around
with radii 2. Now choose, for each , an absolutely continuous in , and

let be a ball around with radius . We have thus constructed a finite cover
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Assume the are bounded and continuous. For each closed
set in and each in ,

Assume the are bounded and continuous. Then, for
each closed set and each ,

for , by balls with radii . Let denote the collection obtained from
this finite subcover, after intersecting with the compact set and taking the
closure, i.e., . Now we identify those sets that are far from

. Define

:

Then we have, uniformly in ,

lim sup
1
log 2

lim sup
1
log

min
log

min 2

Now choose large enough so that the second term dominates. By Defini-

tions 5.36–5.38 and 5.45 we have for . Therefore,

lim sup
1
log 2 2

We are now ready to establish an upper bound.
For each point in and set in [0 ] define

: 0

inf : 0

[0 ]
lim inf

. It clearly suffices to establish that
lim inf

But this follows from Lemma 5.47.

log
[0 ]

lim sup
1
log
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Note that this implies that the order of the two limits is immaterial!
. Suppose . By Lemma 5.63, for each we can find a

so that

whenever . By definition, the compact set

2

and the closed set
: 0

do not have any points in common. By Theorem A.19 this implies that there is a
minimal distance between them: 0. Clearly, if
then for all ,

2 2
5 69

But if 0 ,

2
implies 2

2
Now choose (and ) small enough so that by Lemma 5.48

2
2

implies 2
4 4

From this and Proposition 5.62,

lim sup
1
log

2

lim sup
1
log 2

4 4

2
4

5 70

uniformly in with, say, 1. On the other hand, by Lemma 5.57,

lim sup
1
log

2
5 71

uniformly in . Now substitute (5.70) and (5.71) into (5.69) to obtain

lim sup
1
log 2

4
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Proof of the upper bound, Theorem 5.54

Corollary 5.65.

Remark.

Proof

Exercise 5.66.
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Assume the are bounded and continuous, and let be
a closed subset of . If is continuous in over a compact set ,
then the upper bound is uniform in over the set .

whenever . Since and can be chosen arbitrarily small, the result
follows for the case when . Exactly the same proof establishes the
result in the case .

. Corollary of Theorem 5.64.

The uniformity that holds for the lower bound does not, in general, hold for the
upper bound, as shown in Exercise 5.67 below. However, if happens to be
continuous in , uniformity holds.

log
[0 ]

The standard terminology in large deviations in this context is some-
what unfortunate. Uniformity usually refers to the result of Theorem 5.64, while
standard terminology in mathematical analysis would suggest that a uniformity of
a limit means that can be chosen large so that the bound almost holds, for all
in . The uniformity referred to in the corollary is interpreted in the latter sense.

. By the continuity and compactness assumptions, is bounded. Sup-
pose that the uniformity does not hold for the closed set . Then there are se-
quences and with

1
log 5 72

for some 0. Take a convergent subsequence ; by the assumed conti-
nuity, lim inf . But then the continuity and (5.72) imply

lim inf
1
log

Theorem 5.64, however, yields

lim sup
1
log

and this contradiction establishes the corollary.

Extend Corollary 5.65 to the case where satisfies the fol-
lowing continuity condition. At each , either is continuous, or
and lim . Hint: in this case, for a proof by contradiction, assume
that for some 0 there are sequences and with

1
log

if
if .



0

0 0

#

−

∞

j

j

j

128

{ }

{ }

⋃

Exercise 5.67. x
n

j

j
d

j
t

j j

d

x j
d

x n

x x

K

x n

K

{ }

= ∈ ; = | − | ≥ =

= ∈ ; =

= =
∈ ≤

= = ∞ =

∈ ≤ −

≥ ♠

Chapter 5. LARGE DEVIATIONS FOR PROCESSES

φ , φ( ) , φ( ) φ( ) , , , . . . .

/

φ , φ( ) .

( ) ,
( )

( ) ( ) , , , . . .

>

( )

I
z

x x

F D T x t t
j

j

F x
j

F D T x

I F F F D T
P z F n j

I F I F j

K n

n
P z F K

n n j

Show that when is not continuous, then uniformity may fail.
Use the following construction. Let be a scaled Poisson process as in Chapter
4. Let be a real sequence converging to the point . Define

[0 ] 0 sup
1

1 2

In other words, contains all functions that start at and have at least one jump
of size at least 1 . Denote

[0 ] 0

Then obviously 0. Show that is closed in [0 ] and
that is close to one for all large . Conclude that

0 while 1 2

and for each 0 there exists so that
1
log

for all , and all . Thus uniformity does not hold.



{ }
0

0

129

∗

∗

∗

∗

nI

T

nI

n
n

n

n
n

n

n

T

n
n

nI
n

− ∗

∗ ∗ #

−

∞

#

∗
∗

∗ ∗ ∗ ∗
∗

∗
∗ ∗

− ∗

Chapter 6

Freidlin-Wentzell Theory
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The theory of large deviations we have developed to this point concerns the be-
havior of a process over fixed time intervals. The Freidlin-Wentzell theory takes
these theorems and bootstraps them into estimates on the behavior of a process
over very long time intervals, by splitting time into finite intervals and exploiting
the Markov property. The main result is the famous “rare events occur with prob-
ability ,” where is the minimum over the set of paths that cause the event
(call it ), so that

inf : 0 0 6 1

This identification of a probability with is the variational principle of large
deviations: probability is estimated by solving a variational problem.

For the next few paragraphs we discuss an example in order to bring out the
ideas of the theory. Suppose that we are given a process , such as a queue-
ing process, where there is a very strong tendency for to stay near a point .
That is, we suppose that follows a vector field that has a unique global at-
tractor . What does do over long periods of time? By Kurtz’s Theorem 5.3,
it almost certainly approaches over any fixed time interval. So fix 0 and
consider the intervals 0 ; 2 1 . On each of these in-
tervals Kurtz’s Theorem holds, meaning it is very unlikely for to wander far
from . Eventually, though, since it is possible for to wander away for a
while, it will. So the question is, How long does this take, and what escape route
would follow?

Let’s be a little more specific. Suppose we put a ball of radius one around ,
and ask how long it takes for to exit this ball. Consider the set of paths that
begin at and end on the boundary of the ball;

: 0 1 for some 0 1 for
6 2

Note that different paths may be defined on different time intervals. Define
as in (6.1) and suppose that there is a unique path (and therefore unique

) with . Now we can pretend that each interval
1 is an independent effort by the process to escape the ball—they are
nearly independent by Kurtz’s Theorem since most likely , so that
the process on [ 1 is independent of the process on other intervals.
By a large deviations lower bound, in each interval there is a probability of at least

for to follow the path out of the ball. So we expect that after about
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time intervals (or a geometrically distributed number of these intervals with
mean ), the process would follow and escape. Once it escapes, by
Kurtz’s Theorem it is almost certain that will follow back to , and
begin its Sisyphean escape attempt again.

The preceding paragraph seems to give only a lower bound on the probability
of escape in one time interval—we consider only escape attempts along the path

. Here is where the large deviations upper bound comes in. First, using Kurtz’s
Theorem and the Markov property we can deduce that the probability that escape
takes a long time is very small—see Lemma 6.28. But once we restrict our atten-
tion to bounded time intervals, we can apply existing theory! By Proposition 5.46
the set is compact, for each 0. Since is closed and is, by as-
sumption, unique, Lemma 2.8 states that, as a consequence of the lower semicon-
tinuity of , for every 0 there is a 0 such that whenever

and . That is, all the other escape paths (far from ) are in
a closed subset of . Lemma 2.8 now states that the probability that
will escape by following path that is more than away from it es-
capes by following is smaller than . This follows from our upper bound,
which shows that the probability that belongs to the set of paths in which
are more than away from is less than .

So we see that when has an unique minimizer over a set , then given that
the event in occurred, the overwhelmingly likely way that it did is by being
near . This argument holds for any starting point , since by Kurtz’s Theorem
with very high probability, starting at any the process will first approach , at
which point the preceding argument applies. To make this slightly more precise,
consider the jump-Markov process defined by (6.3) below—this is the process
considered in Chapter 5. Let denote the first time of escape; in terms of (6.2),

inf 0 : 1

Since we only want to describe the path up to the time it actually escaped, it is
convenient to shift time by , so that now

0 1 and

Then by the argument above, there is a law of large numbers for rare events: given
any positive and 0,

lim sup 1

for every in the domain of attraction of . Remember, is not random: it solves
a deterministic variational problem.

The fact that, generically, rare events happen in only one way has many prac-
tical implications. If the rare event in question is undesirable (a frequent happen-
stance, since if we wanted it to occur we would try to make it frequent, not rare)
then auxiliary control on may be in order. We can say, without further study,
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This brings up another point many people raise when first learning the theory of
large deviations. Since we know that the only way an event such as escape can oc-
cur is for the path to follow , why don’t we try to predict the escape attempts by
watching when begins to follow the early parts of (near ), and when it
does this, conclude that will now follow until it exits at the point 0 ?
The answer is essentially contained in the Markovian nature of . The vast ma-
jority of the time when manages to get, say, halfway out by following
part of the way, it will immediately decide to turn and follow back down
to . That is, even though the “prediction” would be correct for most successful
escapes, we would have an overwhelming incidence of false alarms.

One very interesting subject that we do not cover is the question of multiple attrac-
tors . Suppose that there is a fixed set of points such that lim
uniformly for 0 in some neighborhood of each , and suppose that the clo-
sures of the regions of attraction of the cover the state space. Then the process

behaves as follows: first, approaches whichever attracts 0 . It
stays in the region for a long time (mean 0). Eventually escapes
to another region near for a long time. Generally, this transition takes place with

that the control must affect paths near to be effective (see §13.7 for an exam-
ple of a seemingly reasonable control that does not, and hence fails as a control).
Also, the speed with which moves indicates the requisite speed of a
control. Equivalently, it shows how quickly the bad event “builds up” after the
extremely long quiescent period.

Our heuristic discussion has mixed up the first time an event happens with the
steady-state manner in which it happens. This is permissible as long as the pro-
cess comes back to a small neighborhood of quickly after each excursion (i.e.,
we need strong recurrence or ergodicity constraints). This will not be a problem in
our applications, but it is something to be careful about in general. We also prove,
under some constraints, that the steady-state distribution of approaches a -
function at as becomes large. Similarly, we prove that the steady-state prob-
ability of a neighborhood of the set 1 approaches a “conditional”
-function; that is, if we condition the process to actually be near this set, then al-

most all the probability mass will be found at 0 . This provides the answer to
“How does this unlikely event occur?”

The Freidlin-Wentzell theory applies to much more general types of events than
escape from a neighborhood of . The arguments go through without modification
as long as the event in question can’t occur if stays near , and the set of
paths that cause the event is regular enough (see §6.2). For example, in Chapter
13 (starting with §13.2) we will be interested in the event

sup

for some fixed , , , and .
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probability depending only on the points and . This continues. We see that
there is an induced Markov chain on the , depending on which one is near.
The interested reader may consult [FW, §6.6 p. 198].

Unfortunately, the Freidlin-Wentzell theory is technical, and even more unfor-
tunately, some of the most important things to learn aren’t the theorems, but the
techniques brought forth in the proofs. We have tried to keep the conditions for
the theorems strong, so as to make the proofs simpler and more easily understood.
We weaken the conditions through an excessive number of exercises. We strongly
recommend that, on your first perusal of this chapter, you just read Exercises 6.23,
6.34, 6.41, and 6.42, and completely ignore all other exercises. The reason for in-
cluding so many technical exercises is that we need many similar results for the
applications chapters, and proving these results is not difficult, once the basics
have been understood. However, it is time- and page-consuming to detail the ar-
guments.

We recommend that you begin your study by reading §6.1, including the as-
sumptions but not the exercises, through the paragraph following the statement of
Theorem 6.17. Then skip to §6.4 and read the entire section. Then go back to §6.1
and read the lemmas leading up to the proofs of Theorems 6.15 and 6.17, again
skipping the exercises, and read the proofs, too. Continue to §6.2. Then, if you are
motivated, try reading the entire chapter, and test your prowess on the Exercises.

Thefirst problem we consider in this chapter is the classic exit problem. This prob-
lem was the first considered by Freidlin and Wentzell using large deviations. The
question is: If a process is given sufficient time to escape from a given set that
contains an “attracting point,” how long would it take, and what path would it fol-
low on its escape route? Our setup basically follows that of the general process
theory in . The process we are interested in is defined by its generator

6 3

We start with a (non-empty) set in . The set of paths that exit at time zero
is

: for 0 0 0 6 4

where is acceptable. Note that since none of the quantities of interest
depend explicitly on time, we may, whenever convenient, shift everything in time;
the only effect this may have is to slightly confuse the reader. For a set of paths

we use the notation

inf : 6 5
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Assumption 6.1.

Assumption 6.2.

Assumption 6.3.

Assumption 6.4.

Assumption 6.5.

Assumption 6.6.

Remark.

where depends on . The following assumptions are used in order to smooth
the presentation (by avoiding technicalities), and will be relaxed, mostly through
exercises. Figure 6.7 pictorially shows what most of the assumptions mean.

is bounded in with ; that is, consists of the
closure of its interior.

The log-jump rates log are uniformly Lipschitz continu-
ous on a compact set whose interior contains .

That is, the jump rates are defined, are smooth, and are bounded away from zero
on a set that includes the closure of in its interior.

The boundary of is smooth (Definition A.33), and at ev-
ery point in there is an open exterior cone so that, for some 0,

:

That is, we can find a small neighborhood outside so that each point in this
neighborhood is connected to by a straight line that does not re-enter .

As in (5.7) we define a vector field

Recall that defines , since . Let denote
the unit outward normal to the set , which exists since the boundary is smooth.
The next assumption guarantees that whenever starts on the boundary of ,
it will immediately go into the interior; therefore, if starts inside , it never
escapes .

There is a 0 so that, at every point in ,

0

There is a point and, for every 0, there is a
such that, uniformly over , with 0 ,

for all

There exists a unique path and corresponding time
(possibly infinite!) such that

inf

Note that, in our search for an optimal path, we could include in paths
that leave before time 0, as long as they start at and are on the boundary at

0. To see that this would change neither nor , assume for
some time before 0. Since is non-negative, the definition of and
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Exercise 6.8.

Exercise 6.9.

Exercise 6.10.

Figure 6.7. The assumptions.

time-homogeneity implies 0. This in turn implies on [ 0]
by Exercise 5.14. But this contradicts Assumption 6.4, which guarantees that if

then for all . It also contradicts the uniqueness
assumption.

The assumptions imply that is the unique point in with 0. We shall
need the following stronger consequence.

Under Assumptions 6.1, 6.2, and 6.5, we have Lyapunov stability;
see e.g., [Hal p. 26]. That is, for any 0 there is an 0 so that

0 implies
2

for all 0 6 6

(The standard definition uses rather than 2. The reason for our choice will
become clear in the course of the section). Hint: by contradiction. Assume for
some that, for a sequence of starting points the solutions at time are
outside the ball around . The times are bounded by of Assumption 6.5. Use
the continuity of solutions with respect to initial conditions (Theorem A.68) to
obtain a contradiction.

Assumptions 6.2 and 6.5 hold in fact in any (small enough) open
neighborhood of the set .

These assumptions probably seem strange, and perhaps strong; here is a rem-
edy. In the Exercises below we restrict to the positive orthant.

Consider the queue; with the scaling as in Chapter 12,
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Exercise 6.11.

Exercise 6.12.

Exercise 6.13.
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we have a one-dimensional model ( 1), with

1
1

0

Find a point 0 and a ball around for which Assumptions 6.1–6.5 hold.

Consider now independent queues, where the rates
may be different from queue to queue. Then we obtain

0 0 1 0 0
0 0 1 0 0

0
0

1 2 and where the 1 is in the position. Find a point in the
(strictly) positive orthant and a ball around for which Assumptions 6.1–6.5
hold.

Exercises 6.10–6.11 are indeed easy—almost trivial. Some coupling between
the queues makes the picture more interesting.

Consider the case with 2 and
1 0

3
1 0

4 2
0 1

3
0 1

1 2

Find a point in the (strictly) positive orthant and a ball around for which
Assumptions 6.1–6.5 hold. Is it true that any closed, convex set contained in
also satisfies 6.1–6.5? Can you choose in Exercise 6.8 so that 2?

Does the uniqueness assumption in 6.6 hold in Exercises 6.10–
6.12?

We need some notation for the statements of our theorems. The precise defini-
tions are given below; here is an informal discussion of what we need. The symbol

represents the cheapest cost (here “cost” is the -function) for going from
to in time , and represents the cheapest cost when minimizing over

time as well. The function is ; this is the cheapest cost for travel
from the center of the flow to a point . We show in Theorem 6.89 below that

measures the cost for the process to visit a neighborhood of . Recall
that is the interior of the set .

inf 0 :

:

:
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Finally, we extend so that it is defined for all time, by setting

for
for ,

where is the center of the exterior cone of Assumption 6.3 at the exit
point .

Under Assumptions 6.1–6.6, for each and ,

uniformly over in any compact subset of .

Under Assumptions 6.1–6.6, for any bounded continuous func-
tion ,

Under Assumptions 6.1–6.6, with given by (6.1)
and (6.4), we have uniformly over in any compact subset of ,

(i) For each , .

inf : 0 0

inf

0 0 0 6 7

0
0

(We could choose to be the outward normal: however, the current definition
extends easily to the case of a piecewise-smooth boundary). We now state the
main results of this section. For the definition of uniform convergence see Defi-
nition A.10.

0

lim sup 1

That is, the process eventually leaves , and the last part of the path leading to
the exit is near . The reason this is not an immediate consequence of the pre-
vious large deviations bounds is, of course, that the timing of the event of interest
is not bounded; as we shall show, is unbounded as a function of . Theo-
rem 6.17 below describes how fast it grows.

lim [ ] 0

This corollary was one of the original successes of the Freidlin-Wentzell theory.
Using the equivalence of escape distributions of diffusion processes and solution
of Dirichlet problems (see e.g., B.33), this corollary shows that certain limiting
singular Dirichlet problems have constant solutions. See [FW] for more details
of this point. We don’t make use of this corollary in the remainder of our book.

0 lim
log

1
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(ii) .

Under Assumptions 6.1 and 6.5, the positive cone spanned by the
is all of , that is,

lim
1

log

Theorems 6.15 and 6.17 are based on the same approach. We give a construc-
tion and sequence of estimates and lemmas, then use them to establish the theo-
rems. Here are the ideas behind the formulas. By Lemma 6.28, it is very costly for

to escape by wandering inside but away from for a long time. There-
fore, we only need to consider a finite-time problem; but for this we already have
a theory! Lemma 6.21 shows that the “cost” of leaving starting near is con-
tinuous in the starting point. Thus we can look at consecutive attempts to leave ,
starting near . The same continuity (and the Markov property) imply that these
consecutive attempts to leave take lengths of time that are “almost i.i.d.” (Ex-
ercise 6.42), and moreover, by Lemma 6.36, many attempts are required to leave

. Therefore we can apply limit theorems for i.i.d. random variables to obtain
Theorem 6.17.

Show that the results of Theorems 6.15 and 6.17 are not uniform
in . Hint: the problem is near the boundary. Construct a counterexample
using Exercises 6.10–6.12.

We begin the technical exposition with a lemma showing that the assumptions
imply that the process occupies all dimensions of the space.

: 0 6 8

. The lemma will clearly be established once we show that 0 for
some 0. By the assumptions we can find an 0 small enough so that

0 implies

Fix 0 , and consider the path with 0 . Then

since by Assumption 6.5 the point attracts each point in . Thus

lim

and so we can approximate by a point in as closely as desired. Thus we can
approximate any point in 0 (in particular, standard basis vectors for and
their negatives) by points in with any desired accuracy. This proves 0
and the lemma is established.
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Exercise 6.20.

Lemma 6.21.

Proof

Remark.

Exercise 6.22.

Exercise 6.23.

Assume (6.8) and Assumption 6.2. Then there exists a
such that for any , if and if for , then

.
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Assume only that and that all solutions starting in
converge to . Then (6.8) holds.

There are pragmatic reasons for embracing the condition that the positive cone
equals . When it does not, there may be some directions that the process

will take that are “transient,” in the sense that the process will only increase
in those directions. We do not wish to allow transient directions, since we are
interested in processes that have a unique attracting stable point. If and
there are no such directions, then the dimension of the process can be reduced.

Given and let be a straight line between the points

Lemma 6.21 shows that the cost to go between two close points is linear in the
distance between the points.

0 0

. Since by Assumption 6.2 log is bounded in , Lemma 5.32 of §5.2
shows that, for some ,

whenever 1
Now 1, 0 and and so

6 9

The condition that for 0 clearly holds whenever
for some . From the proof it follows that the result extends

to points in the compact set of Assumption 6.2 which contains .
Suppose that in Lemma 6.21, Assumption 6.2 is replaced with the

condition that the rates are bounded above, and for all , all and all
with 1,

log where 0 as 0 6 10

Then the conclusion of the lemma holds in the form where
0 as 0 In particular, (6.10) holds whenever the rates are

polynomials in . Hint: examine the proof of Lemma 5.32.

When 2 we can choose a cheap path that stays away from
a neighborhood of a point , that is,

inf min 6 11
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Figure 6.24. The dark line is a path satisfying (6.11).

This would be desirable when the assumptions do not hold near (usually ), for
example if the rates go to zero near . Fix some 0, and for each ,

construct a path with 0 that satisfies both (6.9)
and (6.11) for a constant independent of . Assume (6.8) and that log are
bounded on

:

If log are bounded on then the constant does not depend on . On
the other hand, if we only assume that

sup log 0 as 0 6 12

for each , then satisfies 0 as 0. Hint: for the last part,
examine the proof of Lemma 5.32.

Thus it is “cheap” for the process to move between close points. Note that in
the one-dimensional case we need special arguments when some rates are zero at

. Here is an important consequence.
Assume log are bounded and continuous. Fix a path and

define : note that traverses the same path as , except that the
time it takes to do so is different. For each , the function is continuous
in near 1. Hint: by Lemmas 5.17 and 5.32, if is large then
is bounded above and below by a constant times log . As in the proof of
Theorem 5.35 show that the set where is large can be ignored. Now invoke
Exercise 5.34.

The next lemma shows that the “price” of avoiding a neighborhood of the sta-
ble point increases linearly in time. This is the main ingredient in reducing the
infinite-time problem to a bounded time interval. For a given positive and (
is Euclidean distance), consider the set of paths that avoid :

[0 ] : inf

0 inf 0 6 13
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Lemma 6.28.
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Figure 6.26. A path in .

Let be the open subset of that includes all points outside ; formally,
: . Define .

The function inf : is continuous
in over the compact set . Hint: combine Exercise 6.25 and Lemma 6.21.

0 0
0

inf inf

. Note that by (6.6), 2. Let s be the longest time (over all initial
points in ) any trajectory stays outside the ball ; by Assumption 6.5,

s . Fix ; we establish the result for each such , and show that the
bound is uniform over . Since is open in [0 ] (see Exercise A.63), the
large deviations lower bound Theorem 5.51 gives

By Exercise 6.27 and Corollary 5.65, this bound is uniform in . But, from
Kurtz’s Theorem 5.3 and the definition of s, with s 1, for large enough

we have

where is a positive function that does not depend on . Hence by taking large
enough, for any ,

0

Now let . Then

s
Since the rates do not depend explicitly on time, the definition of gives

inf

inf inf inf

2 s
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Similarly, for each 1 and , s .

Figure 6.29. Linear lower bound.

Since is increasing in , the choice establishes the
lemma.

Assume that, for some 0, there is a so that
if 0 , then for some either or .
Assume further that the log are uniformly Lipschitz in . Then
the conclusion of Lemma 6.28 holds (uniformly in ). Hint: follow the
proof of Lemma 6.28, and for each point invoke Kurtz’s Theorem around the
appropriate path .

Now we make a standard Freidlin-Wentzell construction. Look at Figure 6.31
as you read the definitions that follow; it may help explain what’s going on. Recall
that by the definition of in Exercise 6.8, 2. Let be small
enough so that inf 2 , and consider the neighborhoods and

. We construct a sequence of consecutive (stopping) times so that, at the
odd-numbered times the process leaves the neighborhood of , while at even-
numbered times the process either enters the smaller neighborhood, or leaves

entirely. Formally, let 0 and for integer 0,

inf : or

inf :
6 14

Obviously, each depends on , on , and on , but we shall suppress these
dependencies in the interest of brevity. We terminate the sequence at the first
time where [that is, at ]. For notational convenience,
we set if the processes exited at some with 2 , and let

.
The following lemmas show that the distribution of the increments

possesses a geometric tail, for all large. Moreover, the probability that leaves
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Figure 6.31. The sequence of exit times. Since isn’t continuous, the
aren’t exactly on or .



∗
'

ε

ε

143

e

o

s

s

s

y

th
2

1

1

1
2

2

P

P

P

P

P

P

E

E

E P

Lemma 6.32.

Proof

1

1

1

Section 6.1. THE EXIT PROBLEM

(ε)

(ε)

ε

ε

ε
ε

ε
ε

ε

ε

( )
ε

ε ε

ε

ε

( ) ( )

ε

ε

( ∣∣ ) { ( )

( ∣∣ )
( ∣∣ )

( ∣∣ )

{ [ ]

[ ]}

[ ]

∗

' +
−

−

' +

'

|'−'|≤
'

|'−'|≤
'

'

'

'∈ '
'

& −

' '
− +

− ·

&

o
j

e o

x j j n j
o nC k

nC k

e

n j
o

n j

x j j n j
o

x n j j n j
o

z q
x n j j n j

z q
z n

z n

z n

y N q
y n

y n y n
nI S O n

nC

e

∞
=

− ' ∈ ≤ −

=

' ∈ ' ∈ '

− ' ∈
= ' ∈ ' ≤ + ' ∈

≤ ' ∈ ' ≤ + ' = '

= ' ∈ ' ≤

' ∈ ' ≤
≤ ' ∈ ' ≤ −

× ' ∈ ' ≤ ≤

' ' ' = ' + ' − ' |' − '| ' 3∈ '
' ' = ' ' = '

'

' ∈ ' ≤ ≤ ≤ − |' − ' | ≤ ≤

≤ −
≤ −

' '

' = ·

G j n
I S

T C C
n k

kT z G e j
e j

C O

j z G z N q

kT z G
z t N q t kT z G

z t N q t kT z z

z t N q t kT

z t N q t kT

z t N q t k T

z t N q t T

y N q z y y q y q z N q
r r y r z

S r T

z t N q t T z t r t t T

e
e

y N q
C

y C C

τ
( )

ε >
< ε

, , . . .

τ τ > (τ ) ( . )

(ε) (ε)

(τ ) (τ ) ( )

τ τ > (τ )

( ) ( ), τ < τ (τ )

( ) ( ), τ < τ (τ )

( ( ) ( ), < )

( ( ) ( ), < )

( ) ( ), < ( )

( ) ( ), .

( ) ε( ) ( )
( ) (ε)

ε ,

( ) ( ), ( ( ) ( ) < ε, )

,

( )

(ε) ε

Under Assumptions 6.1–6.5, for each small enough there is
a , depending only on , and there are positive functions and such
that if is large enough then for

even,
odd.

Moreover, .

at, say, the attempt (i.e., at time ) decreases exponentially (in ) with
rate roughly .

0

1 2

1 6 15

. For even , note that if then necessarily , so

sup

sup 0

by the (strong) Markov property—Theorems A.137–A.138. Using the Markov
property again, conditioning and then replacing the conditioning by maximization
as above,

0

0 1

sup 0

Now for each in , let 2 , so that .
Let be the path constructed in Lemma 6.21, with 0 and , and let

be the set of paths that remain within of during [0 ]. Then

0 1 0

1
1

where the second inequality holds uniformly in in by the lower bound,
and the last inequality holds by (6.9) of Lemma 6.21, where can be chosen in-
dependently of (how?). Thus with 2 ,



2ε

144

P

P

P

P

P

P

P

2

1

2

2

1

1 2

1

e

e

s s

s

s

s

s

%

%
−

−

% +

%

%∈ %
%

∞ ∞ ∞

∞

%
−

% +
−

#

ε

ε
(ε)

(ε)

ε ε

ε

ε

( )
ε

ε /

ε
(ε)

ε

δ

/

( )

( ) ( )

( )

( ∣∣ )
( ∣∣ )

( ∣∣ )

( )

( )

Exercise 6.33.

Exercise 6.34.

Chapter 6. FREIDLIN-WENTZELL THEORY

z n

z n
nC

nC k

e

o
n j

o

n j

x j j n j
o

x n j j n j
o

z N q
x n j j n j

s
o

z n
nC

o
i

x j j n j
o n

s

o o

i i i

% ∈ % ≤

≤ % ∈ % ≤ − · −

≤ −

%
≥

% %
% ∈

% ∈ %

− % ∈
≤ % 1∈ % ≤ + % ∈

≤ % 1∈ % ≤ + % = %

∞ % ∈
% % = % % ∈ % ≥

% % ∈

% 1∈ ≤ ≤ ≤

% ∈ %
%

♠

%

− ≤ | % ∈ ≤
♠

%

= % ∈

= ∩ % \ %

z t N q t kT

z t N q t k T e

e

z C
T

j
N q N q

G n z G
z N q

kT z G
z t N q t kT z G

z t N q t kT z z

T z
G z z z z t N q t
T C n

z t z G

z t N t T e

j

q G x
N q j

j

q
j T

T z G e

q

G
G G q G G G

G G N q N q

( ) ( ), <

( ) ( ), < ( )

ε ε
ε

( ) ( )
(τ )

(τ ) ( )

τ τ > (τ )

( ) ( ), τ < τ (τ )

( ) ( ), τ < τ (τ ) .

<
( ) ( ) ( )

(ε) >
ε / ( )

( ) , .

λ ( )
( )

δ >

τ τ (τ ) . ( . )

ε

, , . . .

( ( )) ( ). ( . )

0

0 1 1

1

uniformly in , by iterating the same argument, and is linear in for small .
We see that we may take any for this bound to hold.

For odd , we use very similar arguments. Clearly the probability to avoid
for the given duration is larger than the probability of both avoiding

and remaining in . Also, for all large enough, if and only if
. Therefore

sup

By Assumption 6.5, there exists some so that, for any initial point
, the path starting with 0 satisfies for all
. Hence by Kurtz’s Theorem 5.3, for some 0 and all large enough,

considering paths that are within 2 of yields, for all ,

0

Using the same iteration as in the proof for even establishes the lemma.

Assume and (6.8). If log are uniformly Lipschitz in
then the conclusion of Lemma 6.32 holds for even . Under the assump-

tions of Exercise 6.30, Lemma 6.32 holds for odd . Hint: see Exercise 6.30.

Thus the times between events have geometric tails. That the time to leave a
small neighborhood of cannot be too short is easy to show:

Assume 6.2 and (6.6). For even , for any there is a 0 so
that

6 16
Hint: use Kurtz’s Theorem 5.3 and the definition of .

For the models we have in mind, often the point is exactly where the assump-
tions concerning continuity and boundedness of the log-rates fail; typically either
some rates become zero, or they are discontinuous. So, let be a non-empty set
satisfying and let . Let be defined by

6 17
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for each

Assume 6.1–6.6, let , and let be odd. For any small,
if is large enough, then uniformly in compact subsets of ,

For any and there are , , and such
that

and

and

for all and , uniformly for in compact subsets of . The
constant is arbitrary in , while is positive, finite, and can be chosen
arbitrarily large.

That is, contains all points in that are not too close to , and are also not too
far.

Assume Lyapunov stability (6.6) with . If Assumption 6.2
holds then (6.16) holds for even . If Assumption 6.2 holds in some

then (6.16) holds for even provided is small enough. Hint for the first
claim: for large enough,

sup some all

(why?). Now apply the previous argument.

Recall the definitions of and of Assumption 6.6 and (6.4)–(6.5),
and that is defined for all , through (6.7). We now prove our main lemma for
the Freidlin-Wentzell theory. This lemma states that the probability that escape
occurs on any cycle is about . Furthermore, it shows that if we condition on
escape occurring at a particular cycle, then the latter part of is close to .

2 0

6 18

0 0

sup

6 19

sup

6 20

0

Note that the range of the “sup” in (6.20) is chosen so that is well defined
throughout the range: we calculate the probability that, while on its journey to
leave , the process stays away from . In fact, one improbable way the process
may exit is by doing so in a very short time. The proof is based on Lemma 6.21
and the large deviations bounds.



Gq
z•

r *(0)

s

∗ ′

146

Proof

P

P

P P P

1

2
1

1 2

1

1 2

( ∣∣ )
( )

{ }

( )

ε ε

ε

ε

α

ε

α

ε ε

α

( ( )ε δ )

α

ε

ε

ε

2

1

1 1 1 1
1 1

0
1

1 2 1 2

1 1
2

1

1 1

1
1

1
1 1

1

2

0 0

Chapter 6. FREIDLIN-WENTZELL THEORY

∗

′
∗

− −
∗

∗

− −
∗

% +

%
− − ≤ ≤

− + + +

′ ′

− − ≤ ≤

∗
∗ + ′

#

% % %
∗
%

n j j

T

T
T

x n j
o

n j

z
T t T

n

n I C C

T t T

n
j j

T
o

T

z n
o

z z n T

z T
T

% % %
% ∞

% −
%

% % − − =
% % = % ≥ − %

% ≤ +

% %

% % ∩ = ∅
% ≤ + +

% ∈ % \ %

% 1∈ % = %

≥ |% + + − % |

≥

≥
{% |% + + −

% | }
%

%
% − %

% − ≥

% %
%

= % % 1∈ % ≤ ≤ % 1∈ ≤ ≤

% 1∈ ≤ ≥ + % ∈

% %

( ) ( )
(τ ) τ <

( ) ( )
( ) ∂ ε

> ( ) ( α)
( ) ( ) ( )

( ) ( ) ε

( )

ε
> ( ( ))

( ) ( ) ( )ε

( ) ( )

(τ ) (τ )

( α) ( ) < ε

δ > (δ )
( α)

( ) < ε

( )
( ) ,

ε τ τ

( )
( )

( ) ( ) , ( ) .

(τ ) (τ ) ( ), ( . )

( )

z N q N q
n z

r t T
N q G

T T r t r T
z r t r t t T N q
I r I S C

r t z

r T N r T G
I r I S C C
z N q N q

z G z z

z t T r t

e

n n
r r t T

r t
z

r t
r t T T z

r n T

z N q
N q

F r r s N q s t r t G t T

F

z G T z F

T I F
I F z z

. For the lower bounds, fix a point in but outside ; note that
(for large enough) satisfies these two conditions (when ). Con-
sider the (deterministic!) path (of Assumption 6.6) from the time it
last exits until it hits at time zero. By taking small we can guaran-
tee that . By Exercise 6.23, there is a path with
, for so that the path remains outside , and

(see Figure 6.37).

Figure 6.37. The path changed on a small interval so as to start at .

By Assumption 6.3 and the remark following Lemma 6.21, for small enough
we can extend the path up to time 0 so that , and so
that . Hence by the strong Markov property, for
any ,

sup

by the large deviations lower bound Theorem 5.51, for any 0 and .
(That the sets we use in this proof, such as : sup

, are open or closed as required follows from Exercise A.63.) Since
this holds uniformly in , the lower bound in (6.18) is established. The lower
bound (6.19) follows from the last two inequalities, since by construction
agrees with on [ 0]. In particular, by definition of , if stays near

then, for large enough a choice of small enough shows that .
For the upper bounds (6.18) and (6.20) we use the large deviations upper bound.

Using conditioning and the Markov property as above, let be in but out-
side , and define

: for 0 for some 0

Then is a closed set, and to establish the upper bound (6.18) we only need to
estimate

6 21

where is to be chosen. By Lemma 6.21 and Exercises 6.23 and 6.25,
(the infimum of over paths in that start at ) is continuous in . Hence by
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Corollary 5.65 the upper bound estimate is uniform in for in the compact set
. Thus, for all large enough and all such

But Lemma 6.21 proves that, for small enough,

for all (proof by contradiction is easy). We now bound the first term on the
right-hand-side of (6.21), by choosing large. Using Lemma 6.32, let be large
enough so that

Thus choosing so large that 1, this term is indeed negligible
when (note that we might have , but this does not affect
the result).

For the final upper bound (6.20), by the last calculation it suffices to estimate
the probability of , where

: sup

where is the first time leaves . Since is the unique minimizer of over
, the path 0 is also the unique minimizer of , among

paths starting at (recall that if then by definition
). But, as discussed in the introduction to this chapter, using the fact that is

a good rate function (lower semicontinuous, with compact level sets) or, using
Proposition 5.46, we obtain that for any 0, there is a small enough so that

4

and this holds for any , where is independent of and (Exercise
6.38). Note that contains paths on [0 ], where is possible: we use

, since by definition is optimal among all paths of all lengths. Now
choose small, and increase if necessary, so that is in . Ap-
plying Lemma 6.21 to both sides of the last inequality, we obtain (increasing
if necessary)

4 3

for all in the compact set . The large deviations upper bound of Corol-
lary 5.65 now gives

for large enough. The uniformity in over follows from the continu-
ity of in , which is established just like the continuity of . Finally,
since by decreasing the probability on the left-hand side of (6.20) decreases,
we conclude that can also be chosen arbitrarily—it need not be large.
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Exercise 6.38.

Exercise 6.39.

Exercise 6.40.
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The proof of Lemma 6.36 does not extend to 1; if the optimal path exits
, say, to the right of while is to the left of , then the only way for

the process to exit at is at the left boundary point. Most likely this will
be done in the optimal way of exiting to the left of ; there is no reason the cost
should be close to . The probability of exit by the optimal path is obviously zero
in this case. However, the basic idea is still valid:

a. Lemma 6.36 holds in the case 1. Hint: by choosing small
we can guarantee that the ratio of the probability of exiting in the “right” di-
rection compared to the “wrong” direction is bounded below (actually, diverges).
b. Show that (in the 4 argument) can indeed be chosen independently of and
of , provided is small. Hint: the first claim follows from lower semicontinuity.
For the second, assume much smaller than and bound the cost to go from the

ball to the ball.

The methods of Lemma 6.36 allow us also to compute the probability of exiting
the boundary through a prescribed subset of the boundary, which does not include
the optimal exit point 0 . Fix a set and assume that it is a “nice” set,
that is, is the closure of its relative interior. Now recall (6.4) and define

: 0 0 6 22

We shall say that exited at and exit was through if the straight line
between and , the position just before exiting, crosses .

Assume is the closure of its relative interior. Under
the conditions of Lemma 6.36, for any 0 small enough, large enough, and
uniformly in compact subsets of ,

exit was through

Extend also to 1 as in Exercise 6.38. Hint: just as in the proof of Lemma 6.36,
the idea is to show that exit must occur in a bounded time, and then apply the the-
ory of Chapter 5. For the lower bound note that if inf then
there is a near with near . Use Lemma 6.21 for approxi-
mations and continuity.

The purpose of this exercise is to show that Lemma 6.36 holds
without even assuming stability of , and under very weak conditions. The key
condition is that it is not likely for the process to remain away from but inside

for a long time. Recall the notation (6.17). Let 2. Assume that log are
Lipschitz continuous in each , that the span (6.8) and that the rates do not
increase or decrease too fast, so that (6.12) holds. Fix and choose in so that

, 0 and
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(i) If for some 0 we can extend for all small enough up to time so
that is away from the boundary of , but not too far, or more precisely

and 0

and if log are Lipschitz continuous also in a -neighborhood of :
, then the lower bounds (6.18)–(6.19) hold, with replacing

.
(ii) Assume that if the process starts near , then it either gets closer or escapes

altogether. More precisely, assume that for some 0, there is a
so that if 0 then for some

either or . Then the upper bound in (6.18) holds.
If in addition exists and is unique, then (6.20) holds.

(iii) The results of (i)–(ii) hold in the case 1, in the form of Exercise 6.38,
provided that for small enough, the process can exit the -ball in the desired
direction, i.e.,

0 0 6 23

Hints: for (i), the proof of Lemma 6.36 extends. For (ii) note that for large,
needs only be taken outside but in . For the last part of (iii) compute
the probability of a sequence of jumps all in the right direction.

The complicated condition concerning in Exercise 6.40, part
(ii), is implied, for example, by the stability Assumption (6.5). It simply means
that there are no limit cycles for inside . Equation (6.23) holds if the rates
are bounded and (at least one of) the rates of the jumps in the direction from
to 0 satisfies, for some positive , 0 and log ,
which holds, in particular, whenever is polynomial in . On the other hand,
if all jumps are of size one and the point is absorbing [that is, 0 for all
], then the condition does not hold. Indeed, in this case the lower bound cannot

hold.
Lemmas 6.32–6.36 indicate that the segments of the processes between stop-

ping times are almost identically distributed, and in a sense independent. We shall
need the following more precise statements in the course of the proof of Theo-
rem 6.17.

Assume the estimates (6.15) of Lemma 6.32 and (6.16) of Exer-
cise 6.34 (or 6.35) hold. Fix 0 and define —
the event that the “cycle” is longer than . Let be a sequence of
Bernoulli random variables with 0 . There is a positive so
that, if ,
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Theorem 6.15.
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Under Assumptions 6.1–6.6, for each finite and ,

The rate of convergence is exponential, uniformly over in any compact subset
of .

for all and all large enough. Hint: use (6.16) to bound the probability that
1. Use induction on , condition on a sum up to 1 and on the position

at , and use the estimates (6.15) of Lemma 6.32. Remember the position is
discrete, for each , and use the Markov property.

Assume the estimates (6.15) of Lemma 6.32 and (6.16) of Exer-
cise 6.34 (or 6.35) hold. Fix 0 and define —the length of
the “cycle.” Let be a sequence of i.i.d. exponential random variables
with mean . There is a positive so that, if ,

2

for all and all large enough. Hint: let first be geometric random
variables with mean . For integer use

and now use the same conditioning as in Exercise 6.41. Finally, replace the geo-
metric random variables with exponential ones.

All the ingredients are now in place to prove the main results of this section.
For convenience, let us restate each theorem before its proof.

0

lim sup 1

. We provide the proof in the case 2. The calculations are validated for
the case 1 in Exercise 6.44.

First note that is almost surely finite (use a coupling argument as in Ex-
amples 4.8–4.9 to show that, eventually, there will be a sequence of jumps in the,
say, direction, uninterrupted by other jumps, that will cause an exit, indepen-
dently of the starting position). On the other hand, by Kurtz’s Theorem 5.3, for
any finite time , the probability that the process exits before (and thus does
not follow ) 0, uniformly in in any compact subset of

. Therefore we can (and shall) ignore the stipulation .
We use the notation of Lemma 6.36. Fix some . Since we want to show

that events of the type (6.19) dominate, we may as well increase the of (6.19) to
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equal and set . So, we define a sequence of events, and for convenience
we suppress the dependence on and the condition .

: sup and

is the “desired” event, that the process exits near , and does so at . Now
let denote the event that the exit is “wild” in that it wanders away from .

: sup and

Note that : Recall that we adopted the conven-
tion that if for some . The event we are interested in is
the union of the , and clearly

Therefore

for all large, by (6.19) of Lemma 6.36. This estimate shows also that the last
sum is finite. Similarly (with the obvious definition of ),
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Exercise 6.43.

Exercise 6.44.

Corollary 6.45.
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Assume is the closure of its relative interior. Under
Assumptions 6.1–6.5, uniformly over in any compact subset of ,

exits through

Suppose now that all the assumptions hold in a larger set , but .
Then for each ,

exits through

for all large, by (6.20) of Lemma 6.36. Combining the two estimates

1 6 24

for all large. Now let
:

That is, is the set of paths that escape right away, before entering at
all. Then it is an easy consequence of Assumption 6.4 and Kurtz’s Theorem that,
uniformly over in any compact subset of , we have a constant such that

6 25

for all large enough . Since a.s. and since the sets , , and are
disjoint,

1

so that (6.24) and (6.25) imply that, for large ,

1 2 1 as

so that convergence is exponential. Finally, the uniformity in follows since the
estimates in Lemma 6.36 are uniform.

Extend Theorem 6.15 to . Hint: since is finite, only the
case needs be treated. Use the extension to the definition of for large
(negative) times and the estimates on the probability of remaining near .

Prove Theorem 6.15 when 1. Hint: see Exercise 6.38.

We can now characterize the relative probability of exiting the set through a
specified part of the boundary . Recall the definition (6.22) of and the
following discussion of the meaning of exiting through .

lim
1

log

lim
1

log

inf : 0 0
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Exercise 6.46.

Corollary 6.47.

Theorem 6.17.
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Let be a Markov process, and let and be respectively
a path and a number that make (6.19) and (6.20) of Lemma 6.36 hold. Assume

and that . Then the conclusion of Theorem 6.15 holds.

Under Assumptions 6.1–6.6 we have, uniformly over in any
compact subset of ,

(i) For each , .

(ii) .

The first result gives the (rough) distribution of the location of exit points for the
process. Note that we are not assuming 6.6, so that there may be multiple points

where isminimized. Some of these points may be in . In that case,
the result does not mean that the exit point is in with probability approaching
one; it only says that the probability decreases at most at a subexponential rate in .
The second result means that if we start in a set that has leave in short order,
then the probability of leaving any other way can be measured by the -function.
If we replace by in the second equation, the minimum will obviously be
zero since, when , leaves quickly, with zero cost. If , then
we get to arbitrarily small neighborhoods of with zero cost by following , and
then we can choose a straight line path to leave with cost at most proportional
to the size of the neighborhood (as in Lemma 6.21).

Prove Corollary 6.45. Hints: the first result requires that you look
at the paths that leave through , and compare them to paths that leave via
. This is done in Exercise 6.39: now follow the proof of Theorem 6.15. For the

second result, show that cheap paths don’t stay in for very long, unless they
are approaching (which may be in ). Then consider the cases where
and separately; since is closed, if then there is a minimal distance
between and .

Inspection of the proof of Theorem 6.15 establishes the following.

The asymptotic distribution of the exit time is concentrated around the point
exp in the sense of Theorem 6.17, which we recite for convenience.

0 lim
log

1

lim
1
log

. We start by showing that the escape time has to be at least as large as spec-
ified in (i). Fix any small enough and define

inf :

(this is the index of , the escape time, so ). To simplify notation in
this proof, let . The idea of this proof is that the number of cycles
it takes for to escape is approximately geometrically distributed, with mean
number , and that each cycle takes at least for some time .
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We take as defined in Exercise 6.41. Now

For the first summand, if 2 Lemma 6.36 implies

(If 1, condition on and use Exercise 6.38 to obtain this estimate.)
Now, for any non-negative random variables and any 0,

[ ], so that for any and ,

[ ]

Therefore, using the notation and results of Exercise 6.41, for all large, and for
,

1 1
3

This puts us in a position to use large deviations, with fixed, and becoming
large. Note that the rate function for Bernoulli random variables is mono-
tone in (the probability of a one) when is far from the mean (consult Exer-
cise 1.17). So, with ,

1 1
3

where 1 3 0 is the value of the rate function when 2 3 at
1 3. Putting the estimates together, for every 0 we have

1
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Therefore, since the second term decreases much faster than the first, we obtain

log
3 1

2

This gives a lower bound on for part (i) of the theorem. This also provides
us with the desired lower bound on the expectation in (ii).

To get an upper bound on in (i), define to be the larger of the defined
in Lemma 6.32 and the defined in Exercise 6.42 (note that this makes the
conclusion of both hold). Fix 2 and let now . As in the
first part of the proof (and with the same caveat in the case 1), using now
Exercise 6.42 and the notation therein,

1
2

1 exp 2 6 26

where the first term of the last line of (6.26) is obtained by Lemma 6.32. The sec-
ond term is obtained from the large deviations upper bound for fixed , so that

is the rate function for i.i.d. exponential random variables with
mean . Since 2 and , the argument of is larger than ,
which in turn is larger than the mean of . Thus is increasing in this re-
gion. Now using the scaling property of the rate function for exponential random
variables (cf. Exercise 1.20), , where corresponds to mean
one. Therefore,

2 2

since is convex, and 0 since is increasing in the range of interest.
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Therefore we have for the second term in (6.26)

exp 2 exp

exp

exp
6 27

which decreases superexponentially fast with , uniformly in 2 . As for the
first term in (6.26), since

lim 1
1

we have, with

1 1

2
6 28

Therefore, combining (6.26), (6.27), and (6.28), we see that

2

exp
6 29

and the upper bound in (i) is established.
To obtain the upper bound for (ii) note that the bound (6.29) is uniform in

2 . Let . Clearly

With the change of variable , we get 2 , and
using (6.29) we easily find positive numbers and so that

2

2 2

which converges to zero as , and the theorem is established.
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6.2. Beyond the Exit Problem
Section 6.2. BEYOND THE EXIT PROBLEM

Example 6.48.

Assumption 6.49.

Assumption 6.50.
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While the exit problem is interesting and useful, the reasoning behind the theo-
rems is much more general. Let us examine the reasoning in detail in order to de-
fine a more general class of events for which the Freidlin-Wentzell theory holds.
To illustrate the idea, consider the following example.

What is the probability that the process will trace your name? To
make this precise, let 2 and assume that the continuous path : 1

0 traces your name. Fix some positive , assume that the point is stable
and is far from points on , and define

: sup

Thus contains all paths that trace your name to within , and do so with a pre-
scribed speed. The analogue of Equation (6.4) would then be the set

: for some 1 : 1 0
The questions are then,What is the probability that your name is ever traced? How
would the path arrive to 1 starting from ? and How long will you have to
hold your breath until this happens?
The answer is that Theorems 6.15 and 6.17 apply: we just have to redefine

and . Some additional care may be required since we no longer work with
bounded processes. Let us now obtain such results for a slightly more general
case, but do keep the example in mind.
We start with a set of paths [0 ] for some arbitrary positive, finite .

This set describes the events of interest. Now let

: for some 0 0 6 30
Note that this does not prevent us from defining events that take a very short time
to happen (shorter than ), since we can extend the path backwards in time by
making it stay at . In fact, it will be convenient to consider as a subset of
[0 , by precisely such an extension. Thus the set is such that the last

portion of each path is in .
Compare this to Example 6.48 and Equation (6.4): in the special case 0 and

: 0 Equation (6.30) reduces to (6.4). We make the following
assumptions.

There exist 0 so that if and for some
then any path that satisfies is also in . Moreover,

.
That is, whether or not a path is in can be determined from its behavior after
the last time it left . Recall the definition of in Equation (6.5).

is a continuity set, and every point in is the limit of points
in the interior of ; that is,

and
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Assumption 6.51.

Assumption 6.52.

Exercise 6.53.

Lemma 6.54.

Exercise 6.55.

Lemma 6.56.

Exercise 6.57.

Under Assumptions 6.49–6.52, conclusion (6.15) of Lemma 6.32
holds, as does conclusion (6.16) of Exercise 6.34.

Under Assumptions 6.6 and 6.49–6.52, the conclusion of Lemma
6.36 holds for .

There is some so that 1 whenever is outside
.

Assumption 6.5 holds with replacing . Assump-
tion 6.2 holds with replaced by the set of all points that can reach with

0 .
We need a technical device, intended to restrict the analysis to a bounded do-

main. Let
[0 ] :

and let be defined through as in (6.30). is the set of paths that either
cause the event of interest, or escape to . Since we have chosen
to be large enough that the event of interest will very likely occur before escape
to , nothing is lost, and we gain compactness in the paths we need to
consider. From here on, unless explicitly stated, we consider the events defined
by . Here are the appropriate modifications of the previous definitions. As in
Definition 6.14, let

inf 0 :

Similarly, the stopping times of Equation (6.14) are redefined by adopting the con-
vention

replace by 6 31

These stopping times are well defined for all 0 . From the definitions it
easily follows that

Under Assumption 6.51, if satisfies Assumption 6.50 then so
does . Moreover, .

We can now follow the proofs of the exit problem, with very little change. We
shall not bother with extensions, e.g., to an irregular point , although again the
same arguments apply. We shall not repeat the statements of previous results,
since they remain unchanged under the convention (6.31).

Verify that the proof of Lemma 6.32 applies under the setup of
Lemma 6.54. Ditto for Exercise 6.34.

2

Prove Lemma 6.56 and extend it to 1. Hints: note that the
conditioning is, in fact, on . The only delicate point concerns
the construction of the path —but remember contains no isolated points:
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Exercise 6.58.

Theorem 6.59.

Exercise 6.60.

Exercise 6.61.

Exercise 6.62.

Under Assumptions 6.6 and 6.49–6.52, the conclusion of Theo-
rem 6.15 and conclusion (i) of Theorem 6.17 hold for the events defined through

, as well as for the events defined through , uniformly in , for
some .

every point is on the boundary of a ball inside . Since is a continuity set,
some paths in the interior of near have almost the same cost.

Extend Lemma 6.56 to the case where is used, and not ,
including the case 1.

0

Prove Theorem 6.59. Hints: consider first the events defined by
, in which case the proofs of Theorem 6.15 and Theorem 6.17(i) go through.

The condition follows since contains an open neighborhood.
This implies 1 and the conclusions for follow.

Extend Theorem 6.59 to an arbitrary starting point , under the
condition that

: 0

where 0 ; that is, it is not likely that will be entered before reaching
.

Extending part (ii) of Theorem 6.17 is not as simple; although it is likely that
the process does not wander far before entering , it is possible that when it does,
it spends a very large time away, and furthermore it might not ever come back.
Thus estimating the expectation is more tricky, and some additional recurrence
conditions are necessary.
Returning to Example 6.48, if a stable process is chosen to trace your name,

clearly it makes sense to choose a process such that the point is actually on the
path ! Indeed, Assumption 6.49 is not necessary. Here is an illustration.

Let : 0 be a continuous path going through
exactly once. Establish Theorem 6.59 for the events defined by .
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Corollary 6.63.

Exercise 6.64.

Corollary 6.65.

Exercise 6.66.

Assume 6.1, 6.3, 6.4, and 6.6. Let the point be stable in the
sense of Lyapunov so that (6.6) holds. Assume there are sets satis-
fying (6.17) so that the log rates are Lipschitz continuous on each ,
and that (6.12) holds. If assume that (6.23) holds. Assume exists and is
unique. Finally, assume

a.s. as

Then the conclusions of Theorem 6.15 hold.

Assume the conditions of Corollary 6.63. Assume further that
for even , there is a such that

Then the conclusions of Theorem 6.17 hold.

Inmany applications, some of the rates go to zero near the stable point , in contra-
diction of Assumption 6.2 on the boundedness of log . Or, the rates may be
simply discontinuous near . In particular, one-dimensional processes such as the

1 queue have a discontinuity at 0. In other applications, there are dis-
continuities at other points: in the basic AMS model of Chapter 13, for example,
some rates go to zero at the point zero, while 0. Nonetheless, we may extend
the Freidlin-Wentzell theory to some of these cases, as was hinted at throughout
the exercises. Other assumptions, such as 6.4 or the uniqueness in 6.6, were im-
posed in order to simplify the presentation, but in practice may not hold, or may
be difficult to verify.
On the other hand, general conditions under which the two main theorems hold

may be too restrictive for our applications. This motivates the various extensions,
carried out in the exercises, as well as the conditions in the corollaries below: the
technical conditions can be verified separately in each application. The proofs fol-
low directly (although not instantaneously) from previous results, and are there-
fore relegated to further exercises.

log
1

Prove Corollary 6.63. Hint: this follows from Corollary 6.47 and
Exercise 6.40. Observe that the condition in Exercise 6.40 (ii) is implied by Lya-
punov stability, and that Lyapunov stability implies that the span .

0

1

Note that if some jump rates go to zero, the conclusion (6.15) of Lemma 6.32
might not hold for even . A direct verification is thus required.

Prove Corollary 6.65.

Using these extensions we may obtain the Freidlin-Wentzell estimates for pro-
cesses that have various sorts of discontinuities. Since one-dimensional processes
are both the easiest to analyze and are the most common in applications (perhaps
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Exercise 6.67.

Exercise 6.68.

Nonsmooth domains and rates.

Assumption 6.69.

because they are easy to analyze ), it is worthwhile to work a little more on
these processes.

Let be a one dimensional process, let with
. Assume is stable in the sense of Lyapunov, so that (6.6) holds. Assume

that the log rates log are bounded above, are Lipschitz continuous except
perhaps at , and satisfy (6.12) (that is, they do not decrease too fast). If (at least)
one of the rates is bounded below and if

inf : 0 0

inf : 0 0

then the conclusions of Theorems 6.15 and 6.17 hold. Note that with the value of
held fixed, there is exactly one value of for which the costs of exiting to either

side are the same, so that the last condition is not restrictive. Hints: the last con-
ditions in Corollaries 6.63 and 6.65 respectively can be established by coupling
arguments (see Definition 4.7 and following exercises). Consider processes that
are the same except that some rates are increased, and some jump directions are
eliminated; see Examples 4.8–4.9. For the existence of use the compactness
implied by Lemma 5.18. For its uniqueness use the strict convexity of .

Let be a one dimensional process with non-negative values;
that is, the rates of jump to the left are all zero when the process is at (or to the left
of) the point zero. Let 1 with 0 , so that exits can occur only
at . Assume is stable in the sense of Lyapunov, so that (6.6) holds. Assume
that log are bounded above, are Lipschitz continuous except perhaps at zero,
and satisfy (6.12) (that is, they do not decrease too fast). If (at least) one of the
rates of jump to the right is bounded below then the conclusions of Theorems 6.15
and 6.17 hold.

We now extend Theorem 6.17 to processes on nonsmooth domains with nons-
mooth jump rates. The idea behind the extension is that we only need certain
estimates on the behavior of , such as its propensity to stay near ; the as-
sumptions we made on the smoothness of in order to prove these properties
are irrelevant so long as the properties hold. We suppose that is defined in
a domain that is piecewise smooth, but might have corners or edges (see As-
sumption 6.71).
Here is the new set of assumptions that we use to replace 6.1–6.6. We follow

their statements by a set of lemmas that show how to extend the reasoning of §6.1
to some nonsmooth problems.

There is a path satisfying Equation (6.6) so that the con-
clusion of Kurtz’s Theorem (Theorem 5.3) holds.
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Assumption 6.70.

Assumption 6.71.

Assumption 6.72.

Assumption 6.73.

Assumption 6.74.
Exercise 6.75.

Assumption 6.76.

Theorem 6.77. Suppose that Assumptions 6.69–6.76 are satisfied. Define as
in (6.1) with defined by (6.4). Then uniformly over in any compact subset of
,

(i) For each , .

(ii) .

We use this assumption instead of Lipschitz continuity of the since the jump
rates may not be continuous when there are boundaries, but the conclusion of
Kurtz’s Theorem might hold anyway.

Assumption 6.5 holds for every bounded subset containing
the unique stable point .

The domain over which is defined is the closure of its
interior, and has the following property. There is a constant such that for any
two points and there is a and an associated absolutely
continuous path with 0 , , and the path satisfies 1.

The rates are bounded above for in bounded regions,
and (6.10) holds.

There is a function with 0 as 0 such that given
any and , the path of Assumption 6.71 can be chosen in such a way that

This enables us to use Exercise 6.22 to conclude that small distances can be cov-
ered in small time with small cost. This assumption also implies that is not an
absorbing point.

The large deviations principle holds for the process .
Check that Assumptions 6.69–6.74 imply that the conclusion of

Lemma 6.28 holds for any bounded set that does not contain .

For every 0 there is a 0 and 0 such that for each
and each less than from ,

for some [0 1] exp

This assumption obviates the need to extend the process outside of . We
simply assume that might exit whenever it is close to the boundary. It
is related to Assumption 6.73, but we decided to keep it separate since it is easy
enough to check.

0 lim
log

1

lim
1
log

This theorem is proved by checking through the sequence of lemmas that lead
up to the proof of Theorem 6.17 and seeing that the new assumptions are indeed
sufficient. Here is a sequence of statements that the reader is invited to check that
lead to the proof of Theorem 6.77.
First, Lemma 6.19 that the positive cone spanned by the is all of holds

under Assumptions 6.71 and 6.70, since these assumptions are strictly stronger
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Lemma 6.78.

Exercise 6.79.

Lemma 6.80.

Exercise 6.81.

Lemma 6.82.

Exercise 6.83.

Exercise 6.84.

Under Assumptions 6.69, 6.70, 6.72, and 6.74, the conclusion of
Lemma 6.28 holds for bounded subsets of . Namely, for any and any
bounded open set with , there are and such that
for all ,

Under Assumptions 6.69–6.74, the conclusion of Lemma 6.32 ob-
tains; namely, for each small enough there is a , depending only on
, and there are positive functions and such that if is large enough, then
for

even,
odd.

Moreover, as .

Under Assumptions 6.69–6.76, the first conclusion of Lemma 6.36
[Equation (6.18)] obtains; namely, let and let be odd. For any small,
if is large enough, then uniformly in compact subsets of ,

than Assumption 6.1 and 6.5, which are the assumptions of the lemma. Secondly,
Assumption 6.73 takes the place of Lemma 6.21.
For the next lemma, recall the definition of , the paths that start at and

stay at least from :

[0 ] :

inf 0 for all 0

Also recall the definition for given and .

0
0 0

inf inf

Prove Lemma 6.78.

0

1 2

1

0 0

Prove Lemma 6.80.

2 0

Prove Lemma 6.82.

Prove Theorem 6.77. Hint: it’s just like Theorem 6.17, using
Lemma 6.82 instead of Lemma 6.36, and using the large deviations principle
where needed. We didn’t assume that exists or is unique; if needed, in its
place, simply use an approximately minimal path.
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6.4. Convergence of Invariant Measures
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We conclude this section with the following conjecture:
When is a regular point (that is, the log are Lipschitz near ), then .
This implies that if , then is irregular in one of the senses mentioned.

The reason such a result is to be expected is as follows. The time to escape a small
neighborhood of is roughly the inverse of the derivative . Therefore the cost
to escape with derivative of size is about . But 0 0 and
is strictly convex in . Therefore the function is minimal at 0 (draw
a picture, or compute a Taylor expansion), corresponding to an infinite time to es-
cape.

We have seen that the times between rare events can be estimated by calculating
the large deviations rate associated with that event. In particular, if a set does
not contain the point , then we expect that enters at times that are ex-
ponentially far apart (Theorem 6.17):

1
log

This leads us to expect that the steady-state probability that is
approximately . That is, the probability of a rare event should be approx-
imately one over the time between occurrences of the event. This section contains
the mathematical justification of this heuristic.
The following additional assumptions are used in this section.

The jumps take integer values in each direction.
The process is positive recurrent.

Assumption 6.85 means that the process takes values in the -dimensional lat-
tice with mesh size 1 . This assumption is imposed in order to simplify proofs;
for a derivation of the more general case, see e.g., [FW]. Assumption 6.86 is es-
sential: in fact, we shall even strengthen it in Assumption 6.88 below. It means
that any point in the lattice can be reached from any other point, and the time to re-
turn, say from zero back to zero, has finite mean (see, e.g., Çinlar [Ci] where the
older terminology “non-null” is used in lieu of “positive recurrent”). As a con-
sequence, the following ergodic properties hold [Ci (5.11) p. 264, (5.26)–(5.29)
pp. 268–269]. For each there exists a probability measure so that, for any set
,

lim 6 32

lim
1

w.p. 1. 6 33

The measure is the (unique) invariant distribution of the process: if is
distributed according to at time , then will be distributed according to
for all .
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1

Exercise 6.87.

Assumption 6.88.

Theorem 6.89.
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Assume that are uniformly Lipschitz continuous in some
neighborhood of . Let be stable in the sense of Lyapunov so that (6.6) holds
and let Assumptions 6.85–6.88 hold. Then for any ,

Let be a smooth, bounded open set, let and de-
fine through Equation (6.30). Define as in Assumption 6.50 and let Assump-
tions 6.51–6.52 hold as well, for some , where . Then

To carry out our program we investigate the behavior of the process on excur-
sions away from a neighborhood of the stable point . Fix and . De-
fine and recall the definition of the stopping times (6.14). These stop-
ping times are all (w.p. 1) finite, due to Assumption 6.86. Define the discrete-time
Markov chain through

0 1

Then it is easy to verify [Ci] that is an ergodic Markov chain taking
a finite number of values (the points on the lattice inside ). Denote the invari-
ant distribution of this chain by , and let denote expectation starting with
the initial distribution [that is, 0 is distributed according to ]. In Exer-
cise 6.87 below it is shown that for all sets ,

6 34

Assume 6.85 and 6.86 and derive (6.34). Hint: see references
to [Ci] above. Use (6.33), choose as the increasing times. Assume first that

contains exactly one point—say . Then the cycle times and the
amount of times spent in over these cycles form i.i.d. sequences. Multiply and
divide by and use the law of large numbers for each. Now recall the number of
points in is finite and do the calculation separately for each starting point in
. Look at the time spent in during cycles that start at some fixed

. The fraction of such cycles converges to , and the amounts of time spent
in over such cycles are i.i.d. random variables.

Let inf : . Assume
For each and , and all ,

sup

0

lim 1 6 35

: 0

lim
1
log inf 6 36
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The first claim is that, as , the steady-state distribution approaches a
-measure at the point . This is very reasonable: as , it becomes increas-
ingly difficult for to escape from neighborhoods of which, in turn,
converges to as becomes large. The second claim is that , the minimal -
function, really measures how difficult it is to get to a set , or how often
will be there. The first claim is proved using only ergodicity and Kurtz’s Theorem.
The second one uses the Freidlin-Wentzell construction, with a bit more arguing.

. Fix some and let : . To apply the representa-
tion (6.34), we estimate the two expectations in (6.34). For each , the
argument of Exercise 6.34 or Exercise 6.35 implies that as .
On the other hand, (positive recurrence), and so by (6.34),

0 and (6.35) is established.
To establish the second claim, we use Lemma 6.36 or more precisely its exten-

sions Lemma 6.56 and Exercises 6.57–6.58. We define the set to be the set of
paths starting at and ending in . Then for any , for small and large

0

for each , by (6.18). But

max

which provides the desired upper bound, since the second term is bounded by As-
sumption 6.88. Now is a jump process whose rate inside is bounded above
by

max sup

Therefore, conditioned on entering , the expected time to stay inside is bounded
below by , so that a similar approximation using (6.18) gives

1

and the proof is concluded.

This result holds for more general processes, although we have to be careful in
stating a theorem since recurrence is no longer such a simple notion. For a more
general theory, consult, e.g., [FW]. It is easy to relax the assumption that is
bounded: we only need that the rates are bounded below at entrance points to ,
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Theorem 6.92.
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Suppose that Assumptions 6.69–6.74, 6.85 and 6.86 are satisfied.
Let be a smooth, bounded open set, let , and de-
fine through Equation (6.30). Define as in Assumption 6.50 and let Assump-
tions 6.51–6.52 hold as well, for some , where . Suppose that there
is a unique such that . Suppose further that intersects at
exactly one point even when extended beyond time zero by the path [this is
equivalent to the assumption that for for a unique ].
Then for all and any ,

so that once inside , the time spent there is bounded below. We will also need
to relax the conditions on the rates, especially in the one-dimensional case.

With the terminology of Exercise 6.35 assume Lyapunov stabil-
ity (6.6) and let Assumption 6.2 hold . Then under Assumptions 6.85–
6.88 the conclusion (6.35) holds.

Consider the one-dimensional case, and let Assumptions 6.85–
6.88 hold. Let be a process with non-negative values. Assume Lyapunov sta-
bility (6.6) with either 0 or 0. Let Assumption 6.2 hold , but
allow the rate of jump to the left to vanish at zero (either decrease or jump down
at 0). If (6.23) holds than (6.36) holds. Hint: see Exercise 6.40 and the remark
following it, where a sufficient condition for (6.23) is given.

Exercise 6.91 covers most of our applications.
Our final result in this section is an extension of Theorem 6.15 to the invariant

measure problem when the jump rates are bounded but are not necessarily
smooth (such as when there are boundaries). It is a natural result, showing that
steady state is achieved essentially by upcrossings. That is, if we know that
is in a set in steady state, then we are pretty sure that the way got to
was by following , whenever there is a unique that goes from to .
Since we are not going to assume smoothness of the rates or smoothness

of the domain of the process, we need some new assumptions. We first assume
that the domain of is defined by a finite number of linear inequalities on ;
it can be a half space, or an intersection of any finite number of half spaces. We
do not assume that it is bounded. For statements of the assumptions we use, look
at the text above Theorem 6.77.

: 0

0
0

lim sup 1

Prove Theorem 6.92. Hint: see Theorem 6.15. We have assumed
enough to make the reasoning simple.
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Chapter 7

Applications and Extensions

7.1. Empirical Distributions
of Finite Markov Processes

In this chapter we derive a few consequences and extensions of the theory devel-
oped in Chapters 1, 5, and 6. The first two sections contain estimates similar to
laws of large numbers, applied to some simple jump Markov processes. In §7.1
we give rough exponential estimates for the amount of time a finite Markov pro-
cess spends in each state, and how often each transition occurs. In §7.2 we obtain
similar bounds for the time spent at zero by certain processes on an infinite state
space (the reals or the positive integers). Section §7.4 has something completely
different. There we show that the optimal path arising in a variational problem
corresponds, in some sense, to a local change of measure: when is following

, its jumps in direction occur at about rate , where is the
maximizing in the definition of . This happens only in a certain
average sense, but the sense is strong enough for many applications. There are
usually many ways that the process jump so as to follow a particular path;
the result is that the way it actually jumps is nearly deterministic.
The results of §7.1 and §7.2 are pretty simple—we include themmostly because

they are needed for the theory of Chapter 8, not because of any novelty. (We hope
that you find our techniques to be appealing, too.) The results of these two sections
are extended to a large deviations regime in Appendix D. Section §7.4 contains a
new approach to a simplified version of an advanced problem: when a rare event
occurs, how do the jumps of the process behave? This is very close to a “Level
III” result, which we don’t even mention in this book.

In this section we study the limits and rates of convergence associated with em-
pirical distributions of finite-state Markov processes. The limits we consider are
on the order of a law of large numbers, or of Kurtz’s Theorem; they are not about
rare events. We do not attempt to derive sharp bounds. Rather, we derive bounds
on the rate of convergence that are uniform over a class of Markov processes.
We start with notation. Let be a finite state Markov process with states
1 . Fix the given set of allowed transitions by defining an

, that is a matrix whose entries are zero or one; 1
means that transition from state to state is allowed. Let denote the rate of
transition of from to , and let denote the matrix of all rates of allowed
transitions (set 0 if 0). Note that, contrary to the conventions in the
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theory of continuous time Markov processes and contrary to our convention con-
cerning the diagonal terms in the definition (4.5) of the generator, here 0
with possibly a strict inequality. This corresponds to a jump from to . In Ex-
ercise 7.8 the results of this section will be extended further, to allow several dif-
ferent jumps between a pair of states. The reason for these quirks will become
clear in §8.4. Throughout this section we impose the following assumption.

The is ergodic, that is, the finite state
Markov process with transition rates is ergodic. (That is, we as-
sume that between any two states and 1 there is a sequence of
allowed transitions leading from to .)
We let denote the unique stationary distribution of —it

is unique by the ergodicity assumption (this is a simple consequence of Lemma 7.4
below). For each let denote the proportion of time in [0 ] that
spends in state ; that is,

1
[ ] 7 1

Let be a collection of allowed rates that are bounded above and below:

: 1 implies
1
and 0 implies 0

7 2
We begin with a simple result showing that, under Assumption 7.1, ap-
proaches exponentially quickly, uniformly in the jump rates over . But
first some technical stuff. Denote

7 3

If and 1 then for some [0 1]
. Hint: what’s the probability that the first jump occurs before time one,

and that it is to state ?

Fix a state and define 0 and (for 0)

inf :

inf : a transition occurs at
7 4

These times should remind you of the from the Freidlin-Wentzell theory. They
are cycle times into and out of a state . The only subtlety is that we might have

, if a transition occurs at that time from state to itself. We also
define the cycle lengths, the differences of the cycle times:

for 0 7 5
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Let be ergodic. For each , , and there exists a and
such that for all starting points , all , and all jump rates

,

Thus is the time spends at until its next jump, while is the time it
spends away from (which equals zero in case that the transition in the definition
of is from to ). All of the are identically distributed, and all the

are identically distributed, except perhaps .
Under Assumption 7.1, Hint: as in Exer-

cise 6.87, use (6.33) and take the limit at points .

0 0
1

1
log

The idea behind this lemma is simple. As in the Freidlin-Wentzell theory, cycle
times have exponential tails. Chernoff’s Theorem then says that over long periods
of time there will be lots of cycles. Furthermore, the average amount of time in
each type of cycle will be very close to its mean, with probability exponentially
close to one. The estimates are uniform over since Chernoff’s Theorem
can be made uniform there.

. We consider each component separately. We use the recurrence
cycles defined in (7.5) above. Let us first show that the have exponential tails.
By definition, is an exponential random variable with parameter (recall
(7.3)). Clearly 1 2 are i.i.d. random variables. Now since there are
only states, it is possible to reach from any state in at most steps.
On the other hand, since , the probability that each transition along this
path actually occurs (given that the preceding one did), and does so within a time
interval of length one is, by Exercise 7.2, bounded below, say by 0 (Exercise
7.2 says that we can take ). But then by the Markov property, for
integer 1,

min for some [0 ]

since we can always make a sequence of transitions from to that has no more
than steps. Therefore,

max for [0 ] 1

and so has an exponential tail; this argument applies also to .
Exercise 1.8 now implies that there is a positive function that vanishes

only at 0 such that for any 0,
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Let denote the number of jumps from state in (in-
cluding jumps to ). Let denote the number of (direct) jumps from state
to state in . In particular,

Let be ergodic. For each , and there exists a
and such that for all starting points , and all jump rates

,

for all

for all

for all and all processes satisfying the hypotheses. Let and let
. Then, for any state and any positive ,

7 6

The second term is bounded above by . Now for any , if (or ) is
large and is chosen small, then implies

1
[ ]

1

(approximate both by taking the upper limit of the integral to be ). Thus we
obtain, using Exercise 7.3, that

1
2

1
2

for all large. The result now follows from Exercise 1.8, applied to .

[0 ]

[0 ]

The next lemma shows that approaches its mean 1 exponen-
tially quickly, and furthermore that approaches its mean
exponentially quickly. It is a simple consequence of Chernoff’s Theorem.

0 0 0
1

1
log

1

1
log
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. Since the number of jumps from differs from the number of cycles by at
most one, we shall prove this result with as the number of cycles. Define

1 1

Then by definition

1

or

Consider the probability of the first event in the last term. For large enough,
clearly 2. By Lemma 7.4 the random variables

have an exponential tail, so that by Exercise 1.8

1
2 2

for some function , which depends only on . Exactly the the same calculation
applies to the second term, using , so the first result is established.
To get the second result, by the triangle inequality,

But by definition, , and so

2

2
and

2

By Exercise 7.7 below, 1 , so that by the first part of the lemma the
first term decreases exponentially fast, as desired. For the second term, recall from
Propositions 4.3 and 4.5 that we can construct as follows. Each time the pro-
cess enters state , the duration it stays there is an independent exponential
random variable with parameter . Let 1 2 be a sequence of coin
throws, i.e., i.i.d. Bernoulli random variables with 1 .
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Then, at the time visits state , it will next go to if and only if 1. Let
and . Then

2 2

2

2 1 exp
2

by Exercise 1.8 applied to the Bernoulli random variables.

For a finite, ergodic Markov process, 1 . Hints: see
Exercise 7.3. Note that , restricted to the intervals when the process is at
is, by definition, a Poisson process with rate . Show that

[ ]

is a martingale (extend Theorem 4.13 to the unbounded function ). Its
mean is clearly zero and, as shown in the first part of Lemma 7.6,
converges in probability to a constant. Show that the expectation of the limit is
zero due to uniform integrability.

Imagine now the Markov process as moving on a graph, whose nodes are
the states. Index the arcs leaving state as 1 . There may be
several arcs connecting the pair and there may be none; there may be arcs
connecting a state to itself. Let be the rate at which the process moves
(from ) along the arc . The motivation for studying this process (and for the
notation) is made clear in §8.4. Denote the state that is reached from by follow-
ing arc as , and set

and for some

Let denote the number of jumps along the arc by time .
Let be ergodic. Then the conclusions of Lemmas 7.4 and 7.6 hold

for the process described above. If moreover then

1
log for all

Note that the estimate is uniform over , which restricts , but not .
Hint: use Theorem 4.5, as in the proof of Lemma 7.6.
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Let us see how our results from previous chapters enable us to analyze some
transition times and some portion of the empirical distributions of certain simple
Markov processes. Specifically we examine the time a process on or on takes
to cross from a positive state to zero or to a negative state. Using Kurtz’s Theorem
or using martingale techniques, we obtain simple uniform estimates on the tran-
sition time. For processes on we also obtain estimates on the observed time
spent at state zero over long periods; this is similar to the results of the previous
section, but we don’t look at the whole empirical distribution, just the time at zero.
We are interested in these questions for use in Chapter 8 in connection with large
deviations theory for processes with a boundary. But some of the results below
will also be used in the applications chapters.
Our first model is a one-dimensional jump Markov process with jump direc-

tions and constant jump rates 1 . The generator of the pro-
cess is thus

7 7

for any real-valued function . The drift of the process is defined as

7 8

From Kurtz’s Theorem 5.3 and (5.7) we know that is the average drift of the
process. We are interested in the behavior of the process until the time

inf 0 : 0
that is, until the first time it goes below zero. Let us first get a rough estimate on
.

Assume and 0. Then there are functions
and , depending only on and , so that for all 1, all 2 and all
0,

and
where 0, and 0. Hint: this follows from Kurtz’s Theorem 5.3,
except for the uniformity in . Scale the process to have jump rate and jump
size 1 . Since we are only looking at the probability that the sample path drifts
higher than 2, we do not get a factor of 2 in front of the estimate. For
a more elementary proof, use Exercise 1.8. Note that the first term is bounded
by 0 , and represent as a sum of i.i.d. random variables

.

Let . Show that

7 9
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θ
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is a martingale. Hint: this would hold by Theorems 4.12 and 4.13, if were
bounded. Approximate by a process that freezes if it reaches , and show using
Theorem 5.1(i) that the approximation error decreases exponentially in . (This
is a standard result in martingale theory, and a standard technique.)

The next lemma uses a martingale technique to estimate the mean time to hit
zero. The general approach goes by the name Dynkin’s formula and is given in
§B.4—see especially (B.33)–(B.37).

0 max

. By Exercise 7.10, is a martingale. By Exercise A.130 (or Theo-
rem A.129) applied to the martingale of Exercise 7.10 we have

0 7 10

(We are justified in using as a stopping time since for any 0

[ ]

so that Exercise 7.9 implies that [ ] 0 as .) But by
definition, 0, and 0 . Put these into (7.10).

The reason that we had to justify the martingale argument with Exercise 7.10
is that is an unbounded function over an unbounded domain. Here is another,
simpler example. Let

inf 0 : or 0

Assume 0. Fix 0 and show that

where is the unique strictly positive solution of

1 0

Extend to . Hint: existence and uniqueness of follow from convex-
ity; compute derivatives, in particular at 0. Assume first that 1 or 0,
for all . For , show that is a martingale by considering a
process that “freezes” at zero and , and follow the argument of Lemma 7.11, to
obtain an exact expression for . Now repeat for general .
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Although the method used in Exercise 7.12 is important, it is more in keeping
with our theme to use the Freidlin-Wentzell ideas to show this result.

Repeat Exercise 7.12 using large deviations methods. Hint: con-
sider and use Corollary 6.45 to obtain a variational problem. Consider
the cheapest path from zero to one over all times . By Lemmas 5.13 and 5.16

for some and 1 . Optimize over and use (C.6) to get
.

Next we obtain some uniform estimates for .

0
1
0 0

1 7 11
1 7 12

0 7 13

. The proof of (7.11)–(7.12) is done in Exercise 7.15 below. To get (7.13)
we simply have to rescale the previous estimate (7.11). Obviously, for any 1,

and (7.13) follows.

Establish (7.11)–(7.12). Hint: use

and follow the same idea as in Exercise 7.9.

We now modify to create an ergodic process on the positive integers. We
impose the following assumption.

The process takes positive integer values. Its generator
is given by Equation (7.7) as long as 0. The are integers, bounded below
by 1 , and 1 for some . When 0 the jump directions and jump
rates are 0 0 1 0 , where the 0 are positive integers.
The process described in Assumption 7.16 is a “skip-free to the left lattice pro-

cess.” (It is called skip-free to the left since it skips no state when moving to the
left.) Note that for such a process, using the notation of Lemma 7.11,

, since 0.
The drift in the interior is still defined through (7.7), using the data in the in-

terior 0. Let denote the fraction of time 0 in the interval [0
[ is the empirical distribution at zero defined in (7.1)], and let denote the
unique probability that 0 in steady state.
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Lemma 7.18.

Exercise 7.19.

Lemma 7.20.

Exercise 7.21.
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π ( ) π > ε < .

( )
( )

, ( , ) ( )
( ) , ( , ) ( )

( ) ,

( , )
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( , )
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Assume 7.16, fix , and assume that the drift (7.7) satisfies
, and that and are all bounded above by . If for

some , then the process is ergodic, so that exists and is unique. Moreover,
for every and there exists a and , depending only on such that
uniformly over in bounded sets and for any ,

Under the same assumptions as Lemma 7.18, there is a such that
for each we have

and for each we also have

Under Assumption 7.16, if 0 then the process is ergodic,
and its (unique) invariant distribution satisfies

0 0 1 0 7 14

Hint: use Lemma 7.11 for ergodicity. To obtain (7.14) take the expectation of (7.9)
with 0 [and hence ] distributed according to .

0
0 0 1

0 0

1
log

Prove Lemma 7.18. All conclusions except ergodicity continue to
hold if 0 0 for all : in that case, all states except zero are transient. You can
also let grow at any prescribed speed that is . Hint: ergodicity follows from
the definitions and Lemma 7.11. The estimates follow from (7.13) of Lemma 7.14
with the same proof as in Lemma 7.4.

We also need to estimate the number of jumps of each type in any time interval
[0 ]. For each let 0 be the number of jumps makes in direction
0 in time [0 ], and let 1 be the number of jumps makes in direc-

tion 1 in time [0 ].

1
log

0
0

1
log

1
1 1

Prove Lemma 7.20. Hint: this goes exactly like Lemma 7.6. Use
Lemmas 7.11 and 7.14 to estimate the lengths of the recurrence cycles.
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This section contains some calculations that do the same thing in three different
ways. We look at a simple process called the 1 , and es-
timate the probability of a certain rare event in three different ways. The point is
to build confidence in the large deviations estimates, to demonstrate our ability
to obtain explicit expressions, and to obtain some estimates that will be used in
many application chapters.
The free process is an 1 queue without a boundary. That is, it is the dif-

ference of a Poisson and an independent Poisson process. The transition
structure of is

1
1

7 15

It is obvious that this process satisfies the conditions of Kurtz’s Theorem and of
the large deviations theorems of Chapter 5. At any fixed , the random variable

is the difference of Poisson and Poisson random variables. Then
is the usual scaled process (check the generator!). Our question

is: Given any 1 , what is the probability that the process exceeds
at time one; that is, what is 1 ?
To begin, we have to know what we are deviating from. By (5.7) or (5.8),

0
and by Kurtz’s Theorem the process converges to as in a
rather strong sense. From (5.2) we have

sup 1 1 7 16

Solving this for (see Exercise 7.24) we find

log
4

2
4 7 17

Figure 7.22. The -function for the free process with 1 2. Note
that 0 at 1.
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3. Direct (formal) approximations

z a a
z

z a e

I r t r t dt

F r r r a
b r b

b b b
I a

F I
F G D T r r

r t r t dt r t r t dt

nz n
n n n

e z a e

a a E e

a e e

X Y
n n

z a X j na Y j

( ( ) ) > λ µ
( ( ))

( ( ) ) ,

#( ( ), ( ))

( ) , ( ) .

( . )

#( , )
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w , w , . . . w

w (λ) (µ) .

( )
ε > >

( ( ) ) .

w

#( ) θ ( )

θ λ( ) µ( )

#

λ µ

( ( ) ) ( ) ( ). ( . )

Let’s calculate 1 in several different ways, for
1 . This should support our confidence that the abstract derivations of

Chapter 5 are correct, provide some intuition, and show some connections be-
tween methods.

. Using Theorem 5.1 and Definitions (5.2)–(5.5) of Chapter 5, we
expect

1
where

inf

: 0 0 1
7 18

By Lemma 5.16, the cheapest path from 0 to is a straight line, with cost
. Since by Exercise 7.24 below is convex increasing for ,

Establish (7.18) by proving that is a continuity set for .
Since is the closure of an open set (in [0 ] : 0 0 ), you
simply need to establish that

inf inf

Show that this holds for any value of and .

. Let be i.i.d. random variables, where is the
difference of two independent Poisson random variables

Pois Pois
Then 1 is a sum of such random variables. By Chernoff’s Theorem, for
every 0 there is an such that if then

1
By the definition of and (1.4),

sup log

sup 1 1

so that again the value of is given by (7.17).
. Let and be independent Poisson ran-

dom variables with parameters and , respectively. Then

1 7 19
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Now let , and apply Stirling’s formula (A.1) to get

!

2

Using this approximation, and applying Chernoff’s Theorem (or Stirling’s for-
mula, as in Example 1.13) to the first term in (7.19) we obtain from Example 1.13

1 exp log 1

exp [ log log ]
7 20

where takes the values for 0. Laplace’s method, described in (1.3) says
that the value of the right-hand side of (7.20) is about equal to the maximal term.
So, write the exponent in (7.20) as

log log

log 7 21

Setting the derivative equal to zero, we obtain
log 1 log 1 log log 1 1 0

This gives

or
0 7 22

Since 0 we obtain that the maximizing is

4
2

To obtain an expression for divide (7.22) by :

1 0

so that
1 4

2
Therefore we have

log
4

2
log

4
2

log log
4

2
log

4
2
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θ
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so evaluating the exponent in (7.21),

log log

log
4

2
2

which yields (7.17).
So, we obtain exactly the same results with any of these approaches, and the cal-

culations are fairly simple. Things get more complicated when we ask questions
about the process, not just its value at time one. This is why we had to develop
the theory in Chapter 5.
We conclude this section with some calculations concerning the function .

These will be of use in Chapter 11. Note that any calculation concerning the be-
havior of of (7.16) immediately extends to the behavior of as a func-
tion of (with held fixed). Thus, the calculations apply to any one-dimensional
jump Markov process with jumps of size 1 and 1 . This variation will be uti-
lized in several applications chapters.

Recall the Definition (7.16) of . Show that the supremum is
achieved at where

4
2

7 23

Calculate also . (Hint: get quadratic equations in and , respectively.
Note that one solution of the resulting quadratic equation corresponds to a min-
imum, at 0.) Using these, establish (7.17). Using the explicit expression
(7.17) verify the calculation of (C.6) which states that . Show
that consequently, the minimum of occurs at the same point that

0. Using this show that
0 with equality if and only if

Note that (7.23) implies that is monotone in . Conclude that is strictly con-
vex, and is increasing for . Finally, show that

1
7 24

as follows. By the calculations above,

By definition of and ,

0
Take derivatives with respect to of both sides and solve for , noting that

0.
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The main result in this section, Theorem 7.26, is a fairly weak result that turns out
to be very useful for applications. Furthermore, its proof is simple. Here is the
idea behind the result. From (1.8) we know that the way rare events occur is by
following a “twisted distribution.” So, if follows a path , then the jumps
of in the direction should occur approximately as a Poisson process with rate

. Here comes from the definition (5.2), (5.4) of with and
:

1

sup

7 25

Wewon’t really prove that the jumps occur in a Poisson fashion, but we will prove
that certain average jump rates converge on large enough intervals. This result is
close to what is often termed “Level III” large deviations, or at least “Level II.”
Therefore we will often refer to the result as “Level 1 1 2” large deviations.
To establish the result, we define the following extension of our process:

where
1

no. of jumps of 0 in direction 1

7 26
Then is a jump Markov process on , with jump directions and
jump rates defined as

0 0 0 1 0 0

The process tracks not only , but also how many jumps of each type
makes. Analogously, for paths for which there is a solution to

(7.25), we define the extended path by

1 ,

, 1 ,

where is a solution of (7.25). To prevent confusion, we shall occasionally
append (or prepend) a subscript to variables and functions associated with the
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Assume that is bounded and Lipschitz continuous for
each . Let be a path with . Then
(i) is well-defined and
(ii) for each ,

That is, for each , there is a with

for every .
(iii) For each there are positive and so that if satisfies

and

then

process so that, for example, is a vector in and is defined as
above, but for the process . Finally, we define , the set of extensions to
that are far from , as

: 0 0

Theorem 7.26 below is virtually a corollary of the following lemma.

log

0
inf

0 0

0

Note that this lemma is purely an analytic statement about the rate func-
tion. It is not a probabilistic statement.
The idea behind the proof is simple: using the change of measure that gives us
, we show that . Then we show that if is an extension (to
) of that is far from , we must have . This follows from

the essential uniqueness of the change of measure [although there may not be a
finite that solves (7.25)]. The rest follows from the large deviations principle
for the process .

. For the first claim we use the fact that , given in Theo-
rem 5.26. Let for some and let
with the same relation between and . Using the notation of (5.20)–(5.23), if

is finite, then

by Theorem 5.26, where is given by

7 27
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By Exercise 5.29, the left-hand side is always defined and unique, and hence we
can define the right-hand side uniquely by this equality, and therefore, is well
defined even when there is no finite maximizer . Now

since in the latter case the infimum in (5.22) is taken over a larger set (there
are more values of that satisfy the equality constraint). Since by definition,

for any , we have established that

If we now establish that

for 7 28

then Lemma 5.25 would establish that

which implies the first claim. But since ,

1

which, together with (7.27), establishes (7.28).
To establish the second claim, let by any point in and let be a point such

that

Let us first show that necessarily

Let be the minimizer of over , which is unique by Exer-
cise 5.24. We have already established that, under Definition (7.28),

If equality holds, then by definition minimizes over . But such a mini-
mizer is unique by Exercise 5.24, so that necessarily . This in turn implies
that , contradicting our assumption.
Now suppose that the second claim were not true. We have already established

that for any in , . So, suppose we have a sequence of paths
with . By Proposition 5.46, this means that the are in

a compact set (at least for all large). Let be a limit of the ; then is necessarily
absolutely continuous with 0 0. By lower semicontinuity of , it follows
that . Since is an extension of , the first claim of the lemma
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Assume that is bounded and Lipschitz continuous for
each . Let be a path with , and so that of (7.27) is continuous.
Then for each ,
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v ε η
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∆
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λ ( )
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(∆, ) < δ , ( . )

There is a delicate measurability issue here: although is measurable, this is
not easy to establish and relies on measurable selection theorems. But we do not
need this: we only need that functions such as are measurable func-
tions of : this follows from standard results, since, for example, is the maximum
of the continuous function . The same comments apply to .

now implies that . But this and the previous arguments imply that
, and consequently for (almost)

all . Since is absolutely continuous and 0 0 0, this in turn implies
for all , contradicting the fact that .

The proof of (iii) is similar: assume the statement is false, and take a sequence
and constants and , both decreasing to zero, so that

and

while

Then there is a converging subsequence, and necessarily its limit is in . By
lower semicontinuity, , contradicting (ii).

The utility of this lemma is the following theorem. Given , and 0,
define , and

and denote the probability and expectation conditioned on staying near by

Here represents the observed rate of jumps of each type over intervals of size
, and represents the difference between this and the “theoretical” jump rate

. The next theorem shows that the maximal deviation of the ob-
served and theoretical jump rates goes to zero in an appropriate limit.

log

0

lim lim lim sup 1 7 29
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This theorem supports the claim that, conditioned on staying close to ,
the jumps of in direction occur as if the jump rate were . How-
ever, the sense in which this holds is pretty weak: we only obtain

1
no. of jumps

in mean and in probability. We don’t obtain any information that would enable us
to distinguish the jump process from any other point process with the same aver-
age rate. That is, we can’t claim that represents a Poisson rate. However,
for many applications these theorems are good enough.

. Fix and some arbitrary 0 and consider first those paths so that
. Then by definition and by Equation (7.27),

1
2

1
2

Since by assumption is continuous, if is small enough then

2 for all 0

For such a value of , choose so that 2 2 . We conclude that, for all
small enough there is a small so that implies

for all in [0 ]. Thus to establish (7.29) it suffices to show that for all
and all , 0 as . However,

7 31

We now apply the large deviations upper bound to the numerator of (7.31). By
Lemma 7.25(iii), there is some 0 so that

for all with and . Therefore, for all large
enough,

7 32

and this upper bounds the numerator. On the other hand, since obviously

inf :
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( ( , ) < ε)
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( ( ) ρ)

ρ ( )/

(∆, )

the large deviations upper bound implies

7 33

for all large. Putting the estimates (7.32) and (7.33) into (7.31), we have

and (7.29) is established.
To establish (7.30) fix small enough as in the previous argument. Since
is continuous, it is bounded and so, for all large, only

if 2. Let

: sup 2

By (7.29),

sup [ ] 0

as . But Corollary 5.8 implies that

sup
2

sup
2

exp 2
exp

for some , and where as . Thus for large enough the
probability that is large has an exponentially decreasing tail, which decreases
with . This implies that

sup 0

with , and (7.30) is established.
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7.5. End Notes
Section 7.5. END NOTES

Ellis [Ell] has a much more complete theory for discrete-time Markov processes.
Some of the results we develop can be recovered from standard sources (e.g.,
Chung [Chu]); however, we felt it instructive (and possibly easier) to obtain the
results as a consequence of our previous development. Moreover, with our ap-
proach the uniformity of the bounds over comes almost for free, while
it might not be obvious from most other methods.
Level III large deviations are described in [Ell] (we believe Ellis is the orig-

inator of the notions of Levels I, II, and III). The theory was first developed in
[DV4]. Our result is much weaker than those in that we do not attempt to look at
deviations in the space of processes. Nevertheless, we obtain an estimate of the
behavior of the process during a rare event using almost no extra theory. Our ap-
proach may well extend to the case where is not continuous, by some sort
of local time average, but we have not done this extension.
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Chapter 8

Boundary Theory

flat boundary process

on the boundary

finite levels process

directions

This chapter establishes the large deviations principle for two special classes of
jump processes. The is a jump Markov process of the type
we dealt with in Chapter 5, except that it is restricted to a half-space, say 0.
Moreover, jump directions as well as jump rates 0 may
be completely different from those in the interior 0. In particular, the jump
rates are not continuous at the boundary.

The differs fromour standard -valued jumpMarkov pro-
cess in that, at any given time, there is a state, or level, associated with the process.
For each such level there is a set of jump directions and jump rates for the part
of the process. Transitions between levels are also Markovian, and may (or may
not) be associated with jumps in the valued process.

In both cases, the jump depend to some extent on position, so these
processes are outside the scope of Chapter 5. The method of analysis is similar
for both types of processes, and so the theories are developed together as much
as possible. The analysis is an extension of the arguments given in Chapter 5; we
refer the reader back to that chapter for motivation and an outline of the ideas.
In fact, Chapter 5 was set up so that we could follow the same trail, providing
additional proofs when necessary.

Figure 8.1. A flat boundary model.
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The finite levels process is a jump Markov process with values in
. When at state the rate of jump to

is . Here .

v

v (v , v , . . . , v , v , v . . . , v ) (v , v ),

v (v , v , . . . , v , v ) v (v . . . , v )

, . . . , ( , ) ( ( ), ( ))

λ ( ) ( ) , , ( )

( ) ( )

( )

( )

( , , . . . , , , . . . , ) ( , ). ( . )

( ) ( ( ), , . . . , , α, , . . . , , α, , . . . , ), α . ( . )

α α ( α)

( )
α

Figure 8.2. A finite levels model, with 1 and 2.

We now proceed to a formal definition of the two processes. We fix two positive
integers and . For a vector we use the notation

where and .

1
1 1

Note that each pair determines . We may have 0 for some
and , corresponding to a change in the level without a change in position. Sim-
ilarly, we may have , corresponding to a change in position without a
change in the level. By definition, is the number of possible (distinct) jumps
while at level .
It will be convenient to give this process a different representation, one that is

closer to the processes we have encountered before. The new process has
values in , and

0 0 1 0 0 corresponds to 8 1

The corresponding definition of jump directions is

0 0 0 0 0 0 0 or 1 8 2

An 1, with in coordinate together with a in coordinate
corresponds to a change from level to level , associated with a jump
(possibly zero) in the first component. An 0 corresponds to no change in
the level. We shall henceforth use the representation (8.1)–(8.2), but will retain
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Assumption 8.4.

Assumption 8.5.

Exercise 8.6.
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the notation , with an explicit dependence on the level . Note that (8.1)
allows us to recover the level from . Similarly for the jump rates

1 8 3

We use either of the notations in (8.3), that is, with the first argument of of di-
mension or , as convenient. With the scaled process in mind, we generalize
(8.1) and obtain the values of under consideration as

0 0 0 0 0 corresponds to 8 4

Since this process is “modulated” by aMarkov chain, we distinguish associated
functions by a subscript “c.” With this notation, the development of §4.2, Defini-
tion 4.6 and Equation (4.5) apply, so that the generator of this process is defined
for all taking the form (8.4) with 1. For real-valued functions
on we define the generator by

The scaled process is obtained, as before, by increasing transition rates by
a factor of , while decreasing step sizes by the same factor. Thus the generator
of the scaled process is given by

and is defined for all taking the form (8.4) with 1 .
We concentrate on , the scaled finite levels process where we ignore the

level. While is not aMarkov process, wewill prove both the upper and lower
bounds in terms of , not .
We make the following assumptions on the finite levels process.

For each , the continuous-time Markov chain with states
1 and rates of transition from to is ergodic.

The log are bounded and Lipschitz continuous in .
[Continuity is in the first coordinates; see (8.3).]

Under Assumption 8.5, if the ergodicity in Assumption 8.4 holds
for one value of , then it holds for all values. Hint: ergodicity depends only on
whether the rates are zero or not.

What can we expect from this process, in terms of its large deviations behav-
ior? The last coordinates clearly converge to zero. Since the rates are smooth
(with fixed), the process does not change much statistically as its part moves
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The flat boundary process is a jump Markov process with state
, where and . At its jump directions and

corresponding rates are , while if then
its jump directions and corresponding rates are .

a little. On the other hand, it does change as it jumps from level to level. But as
the number of such jumps per unit time is increased, the “levels part” of the pro-
cess will have time to settle down to its invariant distribution before the rest of
the process moves much. Therefore, the large deviations behavior should be de-
termined from an “averaged levels process.” This is indeed the form of the most
likely path—see Equation (8.6). To estimate unlikely events, we shall find the
“twisted rates,” then compute a related invariant measure, and again average the
process; see Theorem 8.19.
Here is the definition of the other process of interest.

0 0
0 0 1 0 0

1 1 1 1

Thus this process has one set of jump directions and rates in the interior, and a
different set on the boundary 0. We distinguish functions associated with
the boundary process by a subscript “b.” The generator for this process is then
given by

0 0 if 0

1 1 if 0 .

The scaled process and its generator are obtained by multiplying the rates
by , and dividing the jump sizes by .
Let denote the component of in the direction . We make the following

assumptions on the flat boundary process:
The jump directions satisfy

(i) for 0 1 1 , i.e., the jumps towards or away
from the boundary are integer-valued.

(ii) 1 1 for 1 1 , with equality for at least one . That is, from
the interior the process cannot jump “down” bymore than one unit, and some
jump actually does go down.

(iii) 0 0 for 1 0 . That is, the process cannot jump down from
the boundary.

(iv) 0 1 for some . That is, the process can make transitions from the
boundary to the interior.

This assumption guarantees that the process does not jump beyond the bound-
ary, and in addition the process will, with positive probability, move between the
boundary and the interior.
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There are a few processes that can bemodeled as either flat boundary or finite levels
processes. For example, consider in a process that lives on ,

0 or 1 as in Figure 8.10.

Figure 8.10. A process that can be modeled as either a flat boundary process
or a finite levels process.

For each , log 0 is bounded and Lipschitz continuous
in 0 . Similarly, log 1 is bounded and Lipschitz continuous in

[0 .

Let us now define the likely path and the rate function for the finite levels and
the flat boundary processes. Recall that quantities related to these processes are
distinguished by a subscript “c” for the Markov chain (levels) process or “b” for
the flat boundary process.

For large , the scaled finite levels process cannot move away from 0 .
We therefore define its likely behavior only in terms of its first coordinates. Let

: 1 1 be a set of rates for the jump directions
; that is, is a set of constant coefficient jump rates for the finite levels

process (no dependence on ). Define 1 to be a
distribution on 1 satisfying

0 8 5

Comparing this with the definition A.141 of an invariant measure, Definition 8.3
and (8.1)–(8.2) describing the -part of the process, it follows that the distribu-
tion is invariant for the continuous-timeMarkov chain with rates . By The-
orem A.142 such a distribution always exists, and moreover for fixed ,
is actually unique since under Assumptions 8.4 and 8.5 the rates define an er-
godic chain. By Lemma 7.4 the probability is proportional to the amount
of time this chain spends at state . [Recall that is defined by the right-
hand side of (8.3), so that we need not worry about the value of .]
We define our scaled process as the first coordinates of the chain

scaled in the usual way:

has jump rates in direction
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As we establish in Theorem 8.71 below, the most likely path for the finite
levels process is the solution of

8 6

Show that when the log are bounded and Lipschitz con-
tinuous, then are Lipschitz continuous. Conclude that (8.6) is a well-
posed differential equation; that is, it possesses a unique solution that is continu-
ous in the initial conditions.

For any define the local rate function for the finite levels process

sup max 1 8 7

[See Theorem 8.19 and Lemma 8.20 for alternate forms of .] Recall that we
are interested only in the behavior of the first coordinates of this process. This
however is affected by the levels structure, as is evident from a comparison of
(8.7) and (5.2).

Note that the rate function defined by (8.7) is not a standard Leg-
endre transform: the variable is in , whereas the direction is in . This
distinction is what enables the rate to have nice properties, and in partic-
ular is what makes it equal to the natural rate function for the lower bound.
Let us compute a quick example to show that this rate function makes sense.

Consider a process with 1 and 2 with the following jump rates and
directions:

1 1 1 1 2 1 1 1
1 1 2 1

This process shuttles back and forth between the points 0 1 0 and 1 0 1 with
jump rate one. Therefore the rate function should equal

0 if 0,
if 0.

Let us see that this is so.
If 0, then consider of the form 2 for positive . We have

sup max 1 1

max 0 0
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as ; similarly, choose if 0. Finally, if 0, then notice
that

sup max 1 1

sup max 1 1 1

0

so the formula works.
Finally, the rate function for the finite levels process is defined for functions

with range in :

if is absolutely continuous;

otherwise.
8 8

We now develop appropriate definitions for and for the flat bound-
ary process. The process is defined simply as the scaled version of :

has jump rates 1 0
0 0

in direction 1 0
0 0.

The drift (7.8) in the direction of (normal to the boundary) is

1 1 8 9

Now define for 0 as the solution of

0 0 1 0 0

0 0

8 10

Then by Exercise 7.17, is the probability of 0 under the invariant dis-
tribution of the flat boundary process, but where jump rates are frozen at ,
and is fixed. That is, the process is allowed to move only in the direction,
with the rates frozen at their boundary or near-boundary values. By Lemma 7.18
is therefore the proportion of time the process with frozen rates spends on the

boundary, and 1 is the proportion of time the process spends in the interior
0. We would expect the most likely path to be the solution

of the differential equation
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Exercise 8.14.
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and 0.

8 11

It might seem that the first thing to check is that exists and is unique, be-
cause when the drift is negative at 0, the right-hand side of (8.11) is not
even continuous. However, we really won’t have occasion to use such a result—
we only need a much weaker one, which is established in Exercise 8.13 and used
in Lemma 8.57 below. The exercise establishes that (8.11) possesses a solution
(which is the most likely path) when the jump rates do not depend on . The
result is established (along with much more) in [DI].

If the do not depend on and are Lipschitz continuous
in , then (8.11) is a well-posed differential equation, that is, it possesses a unique
solution that is continuous in the initial conditions. Hint: consider what happens
when a path starts at a point with 0. The only difficulty occurs at
the time hits the boundary 0.

If the log are bounded and Lipschitz continuous, then
is Lipschitz continuous.

For and in , define the local rate function for the flat boundary process
as follows.



R

R

R

1

1

+

+

199

d

i

d

i

θ

( )
θ, ( )

θ
,

( )
θ, ( )

b

k

i
i

e

m

k m

i
i

e m

d

b
T

T
b

D

m m

0

1

1
0 0

0 1

1

0 0

0 0
0

0

1

0 0

1

1

0

%∈ =

〈% % 〉

%∈ =

=

〈% % 〉

+

′

=

$

=

$

Section 8.1. THE RATE FUNCTIONS

x y

y x e x y

y

m x e

x y

x y
x

x

r

I r r s r s ds r

m D m

% %

=

〈% %〉 − ; % −

〈% %〉 −

; % −

= =

∞ =
∞

=

%

% = % % %

∞

= { = } = { = }

& ( , )

θ, λ ( ) > >

θ,

λ ( )

<
<

( . )

( )
& ( ), ( )

( . )

, . . . , , . ( . )






(
∑ ( ))

(

∑ ( ))






∫ ( )

∑ ∑

sup 1 1 if 0 or 0

sup max

1

if 0 and 0

if 0 and 0
if 0.

8 12

This local rate function is the usual one, except that on the boundary 0
the rate may be lower than the rate in the interior for directions parallel to the
boundary. For alternate ways of writing the rate function, see Theorem 8.19 and
Lemma 8.20. Finally, the rate function for the flat boundary process is defined for
functions with range in :

if is absolutely continuous;

otherwise.
8 13

Note that the local rate function for a flat boundary process, when restricted to
stay on the boundary, coincides with that of a finite levels process with two levels:
compare the middle term in (8.11) to (8.6), and the second term in (8.12) to (8.7).
In order to exploit this similarity, we adopt the convention that, for the boundary
process,

and 1 0 1 8 14

We are now ready to state the main results of this chapter. The proofs are given
in §8.3 and 8.5. The large deviations principle we establish for the finite levels
model is the following.
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Let Assumptions 8.4 and 8.5 hold for the finite levels process.
Then is a good rate function in the space , and
(i) For every closed set , uniformly over initial levels

,

(ii) For every open set , uniformly over initial levels
and starting position in compact subsets of ,

Let Assumptions 8.8 and 8.9 hold for the flat boundary process.
Consider points and in . Then is a good rate function in the
space , and
(i) For every closed set ,

(ii) For every open set , uniformly over starting position in
compact subsets,

A flat boundary process would seem to be a limit of finite levels processes as the
number of levels becomes infinite. We would naturally approximate a flat bound-
ary process with a finite levels process by having one level represent the boundary

0, another represent 1, etc., up to 1, and then making
large. (A different approximation would be needed for each scaling of the process,
so that justifying or using this approximation is not obvious). There is, however,
an underlying geometry in the flat boundary process that is missing from the finite
levels process. We allow jumps in the finite levels process to be quite arbitrary. But

[0 ]
[0 ]

1

lim sup
1
log inf : 0

[0 ] 1

lim inf
1
log inf : 0

For the flat boundary model, we obtain the usual large deviations principle:

[0
[0 ]

[0 ]

lim sup
1
log inf : 0

[0 ]

lim inf
1
log inf : 0

The remainder of the chapter is organized as follows. In §8.2 we establish some
properties of the rate functions, roughly along the lines of §5.2. In §8.3 we derive
the upper bound for our processes; the proof is nearly identical to that of §5.5 and
consists essentially of checking that the same steps are valid. Then we establish,
in §8.4, some facts about constant coefficient jump Markov processes, including
Kurtz’s Theorem for the constant coefficient case, and conclude with proofs of the
lower bounds and Kurtz’s Theorem for the two types of processes (§8.5).
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8.2. Properties of the Rate Function

Exercise 8.17.

Corollary 8.18.

Proof

λ ( )

& ( , )
& ( , )

& ( , ) & ( , )

& ( , ( , ))

& &
& ( , )

& & >

For each , the function , defined in (8.7), and the func-
tion , defined in (8.12), are non-negative and lower semicontinuous in .
Moreover, is convex in , and is convex whenever . Fi-
nally, if then the function is convex in .

by definition of the flat boundary process, the jump directions at each level above
zero are the same. In particular, the distance any one jump can take in terms of
the number of levels it could cross is strictly bounded, and is independent of the
approximating . Let us compare how a process might appear in the two presen-
tations. With the flat boundary process, we know that during a large deviation each
jump has its rate adjusted by exp , where is the optimal “twisting” co-
efficient. This means, for example, that if two jump directions and are related
by for some constant , then their twists will be related also. This would
not be at all clear in a finite levels model of the same process, where there is no ge-
ometry; wewould never have any two jump directions that go between levels being
proportional, since all levels are mutually orthogonal. Thus, when we compare the
flat boundary theory to the finite levels theory, we are comparing theories where the
difficulties are in different places. The flat boundary theory is difficult because of
the potentially infinite state space: 0 1 2 . But the jump rules at each
level above 0 are exactly the same. In the finite levels process we add a new
dimension for each level. This generally makes calculation more difficult as the
number of levels increases.

Show that if Assumption 8.4 (Assumption 8.8) does not hold, then
the function defined in (8.8) [(8.13) respectively] cannot be the large deviations
rate function. Hint: show that this function may be too small, so that the corre-
sponding upper bound is too large. Use the following example. Take a standard
Poisson process that moves right in Level one, moves left in Level 2, and has no
transitions between Levels one and two. Compute the upper bound given by (8.8)
for moving right in Level two. Similarly for the boundary process, let the process
move right in the interior and left on the boundary.

In this section we restate all the main results from §5.2, with new proofs when-
ever the previous proofs do not hold. Many of the statements in §5.2 hold for all
bounded without requiring continuity, so that they do not have to be re-
proved. But first we establish the new key Theorem 8.19 for our processes: the
equivalence between the natural rate functions for the upper and lower bounds.
This analogue of Theorem 5.26 is useful in deriving some of the required results.

0
0 0

Recall that for , and are in while for , and are in . In general,
may be non-convex when 0, since it may jump down at 0.

. For and for with 0, repeat the steps of Proposition 5.10 to ob-
tain non-negativity, convexity, and lower semicontinuity. Exactly the same proof
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Theorem 8.19.
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Let be positive. For each the following are equal.

(i) ,

(ii)

where

and

Furthermore, (i) is exactly (8.7), so that the quantities (i)–(ii) represent the local
rate function of the finite levels process. Similarly, (i) becomes (8.12) when re-
stricted to and , so that the quantities (i)–(ii) represent the local rate
function of the flat boundary process when it is moving along the boundary.

(i) (ii)
(iii)

(i) (ii)

Let be positive. For each the following are equal.

(iii)

where

applies to 0 with 0. Setting 0 in the definitions
proves the non-negativity in all cases.
It remains to prove lower semicontinuity of when 0. By Exercise A.29

it clearly suffices to consider sequences whose limit satisfies 0; other-
wise, the previous argument applies. But then the only possible jump of the func-
tion is down (due to the “max”), so that the function is lower semicontinuous
at this point.

sup max 1

inf inf log

: 0 1

: 0 0

0 0

is the natural local rate function for the upper bound. is the nat-
ural local rate function for the lower bound. below is the natural local rate
function that arises in a different approach to the upper bound. If you haven’t al-
ready read Remark 8.12, we recommend that you do so before continuing with
this section.
We prove the equivalence of and by deriving three additional forms.

inf sup 1 0

0 sup 1
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: 0

We don’t use form at all in this book. It is included because it is
a natural upper bound based on a different proof than the one we elected to use,
and for historical reasons: it is the one we derived first.

. It is immediate that if 0 for some and , then we can simply
omit the corresponding term from all expressions. We shall therefore assume that
the are strictly positive.
To show , note that the assumptions of Theorem A.44 are satisfied,

so we can rewrite as

inf sup 1 8 15

Then for each ,

sup 1

sup 1

sup 1

sup 1

so that .
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To establish , we use the representation (8.15) for . It suffices to
show that for each we have

inf sup 1

sup 1

8 16
For each fixed in clearly

sup 1 8 17

sup 1 8 17

sup 0 1

and therefore . The result will follow if we can find some
so that equality holds in (8.17). We assume that (8.17b) is finite, and without loss
of generality that 0 for all . Consider now (8.17b) as the -function of a
process with (constant) jump rates and jump directions , where

1 and 1 . Then by the remark following Lemma 5.21,
assuming is finite implies that lies in the positive cone generated by all the
jump directions (Definition 5.19). In addition, by Lemma 5.21 there is a
maximizing sequence so that at these values (8.17b) converges to its
supremum, and and exp both tend to finite limits, which we
denote and exp . (Recall that need not converge—
in fact, the sequence need not even be bounded.) We define

lim 8 18

Then by (5.24) and the proof of Theorem 5.26 we have

0 meaning 8 19

By definition, for all 1 , where is the positive cone
generated by : 1 . For these given , consider

sup 1
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which is finite for each . Let be amaximizing sequence. Then
by the first line of (5.24) we have

lim 8 20

Nowwe claim that (8.18) and (8.20) together imply that as , exp
and exp have the same limits. That is,

lim lim for all 8 21

in the sense that either both converge to the same finite limit, or both diverge to
. By Theorem 5.26 and Exercise 5.29, the limits on both sides are unique.

Now using our notation for the limits, we have two representations of :

By Lemma 5.21 we have, for each and

implies 0

since it is a coefficient in a representation of , and hence .
The same argument applied to with the representations (8.18) and (8.20) shows
the converse implication, so that if either side of (8.21) diverges for some and
, so does the other. Now

0

lim

where in the last sum we include only those indices for which the limit in (8.21)
is finite. Taking inner product with and with and subtracting,

lim

0
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where again we include only those indices for which the limit in (8.21) is finite.
Since 0, with equality if and only if , we conclude that

for all and .
Substituting these into (8.17) and replacing the sup over with the limits,

the equality in (8.21) implies equality in (8.17), and the proof of the lemma is com-
plete.

. The proof follows from Lemma 8.20 by showing that
and . It is immediate that if 0 for some and , then

we can simply omit the corresponding term from all expressions. We therefore
assume that the are strictly positive.
Since the expression in parentheses in is linear in the , the infimum can

be attained with 1 for some , and follows.
To show define, as in (5.21)

: 0

By definition of ,

: 1

Therefore will follow once we establish that, for each fixed , and
,

sup 1

inf log

But this last equality is established in Theorem 5.26, and follows.
The final claims are obvious from the definitions.

We now proceed along the path of §5.2, and verify each of the relevant re-
sults for the local rate functions and . Some of the results will apply only
to the restriction of to either the boundary or the interior. This was already the
case in Corollary 8.18, which established a version of Proposition 5.10 and Corol-
lary 5.12.
An important difference between the theory of this chapter and that for smooth

processes is that here we cannot expect strict convexity of the local rate function.
One immediate consequence is that, in the constant coefficient case, straight lines
are no longer the unique optimal paths.
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Exercise 8.21.

Exercise 8.22.

Lemma 8.23.

Proof

Remark.

Lemma 8.24.

d D

e
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y
y

x y

y m e m m e m

x y y y

x a a x a x
a x

x m x r
T

I r r t r t dt T r
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r r T r I r r t
r t t r t t

r t

m C B
x y B

x y C y y x y C y y
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= % =
= % =

=
% ∈

♠

% % = % ∈

% = % % = %

% % % = %
% = −

− +
= ♠
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λ ( ) ( ) ( , , )

&( )
,

& ( , ) µ

µ λ ( ) ( ) µ λ ( ) ( ) . ( . )

& ( , ), ( , )

µ (π , π )
> ( / )

µ

λ ( )

( ) & ( ( ), ( )) & ( ),
∆

, ( . )

∆ ( ) ( ) ( ) ( )

( ) ( ) >

( )

λ ( )

& ( , ) & ( , ) .

(ii)

Assume do not depend on . Then for all absolutely
continuous and all ,

where . The same holds for provided either
for all , or for all .

If are bounded, then there exist constants and so that
for all and all ,

and

Consider a finite levels model with 1 and 2 where there
are two jump directions and corresponding rates:

1 1 1 1 0 0
2 1 2 2 0 0

(The process never switches between levels; the projection on is a constant.
Therefore this process violates Assumption 8.4.) Show that 0 for any

[1 2]. This proves that the rate function is not strictly convex. Hint: this is
easy using form of the rate function. Just divide up the mass among the two
levels so the mean drift is correct.

Under Assumption 8.4, 0 if and only if for some
,

and 0 8 22

Under Assumption 8.8, the same holds for 0 0 with , and
moreover 1 [Equation (8.9)]. Hint: see the definition of and
observe that for 0, the function log is continuous, positive,
and vanishes if and only if .

Note that under Assumption 8.4 there exists a unique satisfying (8.22).

0 8 23

0
0 0

. The same as for Lemma 5.16.

Unlike Lemma 5.16, we do not claim that equality holds in (8.23) if and
only if is a constant, since the rate functionmight not be strictly convex. This
means that we are not guaranteed that everyminimal path for a constant coefficient
process is a straight line; there might be other minimal paths. However, unique-
ness clearly holds in the flat boundary model away from the boundary, since the
process is of the type considered in Chapter 5.

log log
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Proof

Lemma 8.25.

1

Proof

Definition 8.26.

Lemma 8.27.

Proof

Lemma 8.28.
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θ (θ , ) ( , θ )
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( )
ε > ( )

( ) ε.

( )

( , ) ( ) ( ) ( ) .

>

( , ) ( ) ( ), ( ) ,

( )

& (θ , λ, ) θ , λ ( ) . ( . )

& (θ , λ, )
> >

( ) ( )

λ ( )

& (θ , λ, ) θ , ( ) , .

Assume the are bounded and consider or
. For each the functions in are uniformly equicontinuous.

Moreover, for each there is some so that

The positive cone associated with is

for some with

For any there is a so that and implies
that there exists a representation of so that

and

where . In fact, we can choose for some constant
.

Assume are bounded. Given any there exists a con-
stant so that for all with ,

implies for all

. As in Lemma 5.17, but put 0 or 0 respectively.

For a more detailed statement of the following, see Lemma 5.18.

:
0

. This follows from Lemma 8.24: see proof of Lemma 5.18.

The definition of a cone that is appropriate for the finite levels processes and
for the flat boundary process around 0 (cf. Definition 5.19) is

: 0 0

0

0 0

max

. This follows immediately from Lemma 5.20.

Define

max 1 8 24

Define similarly, through (8.24) if 0 and through (5.16) if
0 or 0.

Let have the representation .

log

1
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Moreover, if and
for some , then necessarily in every representation of . The

same conclusions hold for .

Assume are bounded. Then is bounded for
in bounded subsets of , uniformly in . Moreover, for each , is con-
tinuous on . The same conclusions apply to when or, if ,
provided is restricted either to or to .

Assume are bounded and let the ergodicity Assump-
tion 8.4 hold. Then for each and there exists a bound so that for all

with ,

Under Assumption 8.8 this conclusion holds also for .

lim lim inf
0

. Let . Clearly

max 1

Therefore,

The proof is now exactly as in Lemma 5.21. The proof for is identical.

As in the remark following the statement of Lemma 5.21, it follows that we can
assume that converges to some constants .

log

0 0
0 0

. From the proofs of Lemmas 5.21 and 8.28 it follows that is finite at each
point in . Boundedness follows by the arguments of Lemma 5.22. By Corol-
lary 8.18 the function is convex and lower semicontinuous. TheoremA.45 now
implies the continuity, since for all , the set : is a polytope.
Finally, since is closed, is uniformly continuous on bounded subsets.
For a more explicit proof, follow the proof of Lemma 5.22. The proof for is

identical.

log
0

sup

. The proof of Lemma 5.23 applies, with the following changes. Let be
the invariant measure for the levels process, which exists due Assumption 8.4. Set
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Exercise 8.31.

Lemma 8.32.

Proof

Exercise 8.33.

Lemma 8.34.
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For each the infimum in Theorem 8.19(ii) is attained. That
is, there is a and a such that

Let , and let and be positive numbers. Then

implies

& θ, λ, & θ, λ , λ ( ) λ ( )

δ

&

µ ν (µ)

θ , λ ( )

µ ν ( )
ν ( )

λ ( )
ν ( ) λ ( ) .

µ , ν

, . . .

ν ( )

ν ( ) λ ( ) ν ( ) µ( )
µ, ν

ν ( ) ( )
π

(ν, λ) π ( ) λ ( ) ν ( ) ν ( )
ν ( )

λ ( )
. ( . )

θ λ ( ) ( )

( ) ( ) & (θ , λ, ) ( , λ).

and restrict to the smallest affine set Aff containing [Definition A.37(i)].
Interpreting open sets as open relatively to Aff , the previous part of the proof
where is held fixed applies. Replacing (5.18) with

max 1

the rest of the proof of Lemma 5.23 applies as well. The conclusion for follows
by applying either the same argument, or Lemma 5.22, depending on the region.

Prove Lemma 8.30 when Assumption 8.4 is replaced by the as-
sumption that there are no transient levels. Hint: there exists an invariant measure
with positive probability at all levels.

sup max 1

log

. See Exercise 8.33 below.

Prove Lemma 8.32. Hint: take a sequence of points ,
1 that lead to the infimum, and take a subsequence along which every

coordinate either converges, or diverges monotonically to . If diverges,

set , and otherwise give and the value of the limits.
Then attains the infimum.

Let be another set of rates for the jump directions . Suppose that the
invariant measure is unique (this means that Assumption 8.4 holds). Define

log 8 25
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Proof

Lemma 8.35.

Proof

Lemma 8.36.

Proof

Theorem 8.37.
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λ ( )
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λ ( )
µ ( )

, ( ) < ( )

(ii)

Suppose Assumptions 8.4 (ergodicity) and 8.5 (Lipschitz continu-
ity) hold. Then for any constant , the function is continuous, uniformly
over the set

Under Assumption 8.9 (Lipschitz continuity) the same holds for when
is restricted to , and when in addition Assumption 8.8 holds, the same
holds when is restricted to .

If are bounded then there exist and so that for
all and all ,

if ,
if .

Let Assumptions 8.4–8.5 hold both for the original as
well as for some rates . Then the conclusions of Theorem 5.35 hold for
the finite levels process. Fix with . Define as

. Follows from Theorem 8.19.

Similarly, the analogue of Theorem 5.26 follows from the representation in
Theorem 8.19

inf : 8 26

since the last coordinates in the definition of imply that is an invariant
measure. The same comment applies to the flat boundary process with
0, except that there in (8.25) takes the values zero and one. In this case the
invariant measure is on the “states” zero (boundary) and one (interior).

:

0
0

. This is established in Equation (5.19): see the proof of Lemma 8.30.

Lemma 8.35 is clearly false for the flat boundary process if we allow to ap-
proach the boundary. For example, suppose that there is a jump direction 0
such that 0 1 0 for all . Then 0 for 0, but

0 when 0.

log

log

. The same as the proof of Lemma 5.32, since obviously any component of
an invariant measure is bounded by one.

Theorem 5.35 depends only on Lemmas 5.17, 5.18, and 5.33, and so it holds
for the finite levels process. We need to modify the statement of the Theorem to
have it hold for the flat boundary process, since Lemma 5.33 does not hold there.
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the function with the replacing the in the definition of
. For any there exists a so that

implies

Conclusion (8.27) holds for with an identical definition of , but un-
der Assumptions 8.8–8.9.

If the are bounded and continuous,
then the function is lower semicontinuous in . The same holds
for .

0

max sup

8 27

. Exactly the same as the proof of Theorem 5.35.

The definition 5.36 of takes the following form in the present case.

sup 1

sup max 1

8 28

where in the middle term, . With this new definition of we define, for

sup

These are also the definitions of when 0. Otherwise, the definition
of is given through Definitions 5.36–5.37. As before, we set
whenever .

Lower semicontinuity

. Identical to the proof of Lemma 5.40, except in the case of with 0.
In this case the function of (5.28) is only lower semicontinuous in , and the rest
of the proof is unchanged.

If the are continuous then is right continuous in
, that is,

lim
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Lemma 8.40.

Proof

Lemma 8.41.

Proof

Proposition 8.42.
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If are bounded and continuous, then both and

are lower semicontinuous (in the metric). The same holds for

and .

Let Assumptions 8.4–8.5 hold. Then for any with
and any there exists a step function so that

The same conclusion holds if is replaced with or, under As-

sumptions 8.8–8.9, with or with .

If are bounded and continuous, then for any com-
pact

and

are compact sets in , for both the finite levels and the flat boundary pro-
cesses.

uniformly in in bounded sets. The same holds for . In particular,

lim

sup lim

Hint: see Exercise 5.41.

log

. The same as the proof of Lemma 5.42.

0

. Note that is continuous in , uniformly on com-
pact sets. The proof for the finite levels model is therefore the same as that of
Lemma 5.43. For the flat boundary model, divide time into : 0 and
: 0 for the purpose of defining the simple function . The rest of

the argument from Lemma 5.43 goes through as before.

Recall Definitions 5.44–5.45 of the level sets of and of

. We omit the subscripts and below, where no confusion may arise.

log
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If are bounded and continuous, then for each closed set
, and are lower semicontinuous in .

Let be compact and let Assumptions 8.4–8.5 (finite levels) or
Assumptions 8.8–8.9 (flat boundary) hold. Given , , there exists a
such that

for all

. Identical to the proof of Proposition 5.46, with Lemma 8.25 replacing
Lemma 5.18.

Recall the notation inf : 0 .

log
[0 ]

. Identical to the proof of Lemma 5.47, with Proposition 8.42 replacing
Proposition 5.46.

Finally, Lemma 5.48 holds, with a slightly different proof.

0 0

:

. There is no difference in the proof for the finite levels process. For the
flat boundary process the proof goes exactly as before up to the definition (5.29)
of . We are no longer able to take since, if , this
would change the times the path spends on the boundary (or even “penetrate” the
boundary!) so that the hypotheses of Theorem 8.37 would not hold. The appro-
priate approximation is derived in Exercise 8.45 below. With this , the proof is
concluded exactly as before.

Derive an approximating for Lemma 8.44, so that for large

sup and

Hints: if inf 0 or if for infinitely many , the previous
constructionworks. Otherwise, show that it suffices to consider separately the two
cases: for all , or for all . In the first case, take a path that
starts at , follows any (interior) jump direction with a negative component in the
zero direction until its distance from the boundary is , and continue following
(shifted in time). This creates a path with the same time spent on the boundary

(except for a small initial and small terminal interval). In the second case, begin
with shifted to start at until the first time this path hits the boundary. Continue
by following the segment of starting at the point first hits the boundary (shifted
in time, and shifted in space tomatch the first segment). Use continuity of the path
to establish the desired properties.

Note that Lemma 8.44 fails in the flat boundary case if the boundary cannot
be reached. For an example, take any two jump processes on whose jump
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Suppose Assumptions 8.4 (ergodicity) and 8.5
(Lipschitz continuity) hold. Then for each , each closed set
and each , uniformly in ,

Suppose Assumptions 8.8 (irreducibility) and
8.9 (Lipschitz continuity) hold. Then for each , each closed set

and each with ,

provided .

directions span disjoint cones. Let one process define for 0, and
the other define for 0. Then if 0, 0, we see that we cannot
approximate by . Of course, if the boundary cannot be reached we do
not need a boundary theory

We now move on to the proof of the upper bound. Here is where the hard work
of §5.5 bears fruit: almost nothing needs to be changed in order that the same
theorems apply to the boundary and finite level processes. Recall that the scaled
process does not include the levels: see the definitions in §8.1. We also omit
the subscript and . We shall prove

(Finite Levels)
0 [0 ]

[1 ]

lim sup
1
log

(Flat Boundary)
0

[0 ] 0

lim sup
1
log

0

Proving these theorems is simply a matter of checking that the argument given
in §5.5 goes through. We refer to that section for motivation and some of the
proofs. We now check the steps one by one for the two processes.
For the finite levels process define as the linear interpolation of :

1

For the flat boundary process we take exactly as in Definition 5.56:

1

To simplify the notation, we will often omit the dependence on the initial level .
The first four claims in §5.5 do not assume continuity of the . There-

fore they hold for both the finite levels process and the flat boundary process, and
the only changes are that in the finite level case we ignore coordinates. We now
check Corollary 5.55.
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Proof

Lemma 8.49.

Proof

Lemma 8.50.
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sup exp log

. Corollary 5.55 did not require continuity of the , so its proof holds.
We can replace by for the finite levels process, and the result still holds since

lim sup
1
log

lim sup
1
log

. This follows from Corollary 8.48, exactly as Lemma 5.57 followed from
Corollary 5.55.

Recall the definition (5.56) of the compact set :

[0 ] : 0
1

log

where was defined in (5.55) as the modulus of continuity.

[0 ]
[0 ]

lim sup
1
log

[1 ]

lim sup
1
log

. Lemma 5.58 applies, as no continuity was assumed.

If the are bounded, then there are positive constants
and such that for any ,

uniformly in .

For the flat boundary process with bounded ,

uniformly in . For the finite levels process with bounded ,

uniformly in .

Assume the are bounded. Let be a compact set, where
for the finite levels process, and for the flat boundary process.

For each there is a compact (for the finite levels model,
while for the flat boundary process) such that for all ,

for the flat boundary process. For the finite levels model, for all ,



x

x

217

δ

δ

δ δ

δ

δ

δ δ

R
R

E

R

R R

P

P

K K

K
K

K
K

S

S

K

1

1

0

0
0

0

1

0
1

0 0 1

2

( ( 〈 ( ) 〉))

〈 〉 〈 〉

( )

∫

( )

∑(〈 〉 )

+

→∞
#

+

→∞
#

#∈

% ′

→∞
# →∞ #∈

% −

=
+

+

Lemma 8.51.

Proof

Lemma 8.52.

Proof

Section 8.3. PROOF OF THE UPPER BOUND

i
d

d

n
x n n

D

n
d
n

d

d

i

d d

n
x n x

r
T

T
T

d

n
x n x n r

n

n

n

j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

j j

x m x
x

n y
T
n

y T g x

y y

x

C
C C

M

n
y I r

x C

I r r t t g r t t dt

r
j D

g x x
x

n
y r

r r t r t t
T
n

g r t t

t
n n n r t t t t

g r g r t t

#; # ∈
# ∈ #

# − # # ≤ # #

# # = #
# # = # #

#

⊂ ⊂
#

⊂

# ∈ ≤ − # #

# ∈

# # = 〈# # 〉 − # #

# +∞
∈

# = #
=

# ∈ ≤ − # #

# # = # − # # − # #

#
≥ # ∈ ∈ #

# # ≤ # #

λ ( )

θ

( ), θ ( , θ).

θ θ

, θ , θ

λ ( )

θ δ >
( )

( , θ),

( , θ) ( ), θ( ) ( ( ), θ( ))

, . . . ,

δ

( ) ( , θ) , ( . )

( , θ) ( ) ( ), θ( ) ( ( ), θ( )) .

δ > θ( )

, θ( )

( , θ ) ( ( ), θ( )).

If the are bounded, then uniformly over (over
for the flat boundary process) and in bounded ,

Let Assumptions 8.5 or 8.9 (Lipschitz continuity) hold. Let be
a compact set, where for the finite levels process, and for the
flat boundary process. Fix a step function . For each and each compact
set we have

uniformly in , where

whenever is absolutely continuous, and is defined as otherwise. The start-
ing point can be any level for the finite levels model.

lim sup log exp 0

. For the flat boundary process, the proof is the same as that of Lemma 5.59.
For the finite levels process, simply note that we only use with 0. The es-
timation goes as before, since now and the rest of the estimates
have also been reduced to .

We have to rework the proof of Lemma 5.61, since continuity of was as-
sumed.

0

lim sup
1

log inf

[0 ]

. For the finite levels model, the proof is exactly the same as the proof of
Lemma 5.61, since the function is continuous in ( ). For the flat bound-
ary model this function is not continuous; there may be a jump when .
However, the argument up to (5.64) holds; that is, for the flat boundary model we
have

lim sup
1

log lim inf inf 5 64

where

To continue, note that for any 0 and any step function , there exists an
such that for all , all , and all [ ] with no jump of

in this interval,
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Let Assumptions 8.5–8.4 or 8.9–8.8 hold. Let be a compact
set, where for the finite levels process, and for the flat
boundary process. Then, for each , , and , uniformly in : For the finite
levels process, uniformly in ,

For the flat boundary process,

This is because all have the same modulus of continuity . Therefore for
each step function , if is the time of the first jump of ,

0 8 29

The error term arises because the time might be in the interior of an interval
[ ]. Although may not be continuous, it is bounded on the compact set

: 0 0

and therefore 0 as uniformly in and .
Equation (8.29) is a generalization of (5.66). Also, (5.65) holds verbatim:

0 0

where the error is uniform, since is compact. So we obtain for each
and 0,

lim inf inf inf

And finally we obtain for any 0 (replacing by 2 if necessary)

lim sup
1

log inf

uniformly in .

The proof of Proposition 5.62 uses continuity of and the previous results, so
that it goes through practically verbatim for finite levels processes. Since an ap-
proximating function is required, ergodicity assumptions appears.

[0
0

[1 ]

lim sup
1

log

lim sup
1

log
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Proof

Exercise 8.54.

Lemma 8.55.

Proof of the upper bounds Theorem 8.46—finite level processes, and Theo-
rem 8.47—flat boundary processes

Corollary 8.56.

Proof

Let Assumptions 8.5 or 8.9 (Lipschitz continuity) hold. Then for
each pair of closed sets and for the finite levels process, or

and for the flat boundary process, we have

Under the assumptions of either Theorem 8.46 or Theorem 8.47,
if is continuous in over a compact set , then the upper bound is uniform
in over the set .

. For the finite levels process, the proof is the same as that for Proposi-
tion 5.62. For the flat boundary process, as we show in Exercise 8.54 below, given
any and , there exists a neighborhood such that for any ,

8 30

Then the rest of the proof goes through exactly as before.

Establish (8.30). Hint: the usual continuity arguments apply when
and are both on the boundary or both in the interior. Moreover, if is

within of the boundary but is not, then the inequality is in the right direction.
Show that the amount of time the reverse happens can be made small (uniformly
in !) by choosing the neighborhood to be small.

Finally, Lemma 5.63 of §5.5 was a consequence of lower semicontinuity—
Lemma 5.47. But we established lower semicontinuity in Lemma 8.43 in §8.2.
So, we have the following result.

[0 ]
[0 ]

lim inf

We now have all the ingredients we need for proving the large deviations upper
bound for both types of boundary processes.

. Identical to the proof of Theorem 5.64.

. Identical to the proof of Corollary 5.65.

The reader will note that the sequence of lemmas we have given, and hence
the upper bound, holds for more general processes than we have considered. See
[DEW] for a more general statement.
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As in §5.3, our proof of the lower bound uses an approximation by a locally con-
stant coefficient process. However, our processes change their character as the
finite levels process moves from level to level, or as the flat boundary process
moves along the boundary, staying part of the time on the boundary and part of
the time just inside. Therefore we need to estimate the amount of time these pro-
cesses spend at the various levels or on the boundary, respectively. We saw in §7.1
that in the limit, the fraction of the time the process spends at each level equals an
invariant measure and, moreover, that fraction of time converges to the measure
exponentially fast. This will allow us to prove the lower bound assuming that the
“levels part” of the process is always in “steady state.” The only point requiring
extra attention is that we need the fact that our estimates hold uniformly among all
processes with jump rates (coefficients) whose logarithms satisfy a given bound.
This will eventually enable us to prove the lower bound uniformly in a strong
sense.

We start with notation. For a finite levels process of Definition 8.3, we
consider only ; that is, the level. So, to simplify the notation, we take
1 .

Fix the given set of allowed transitions by defining the

for some 8 31

Let denote the rate of transition of from to , that is, in the notation of
Definition 8.3,

8 32

Both and are independent of the position since we assume that the
processes have constant coefficients. As before, is the vector of all
rates of allowed transitions. Note that, contrary to the conventions in the theory
of continuous-time Markov chains and contrary to our convention concerning the
diagonal terms in the definition (4.5) of the generator, here 0 with possi-
bly a strict inequality. This corresponds to the jumps in the part of the process
without an associated jump in the part.

We let denote the unique stationary distribution of —
it is unique since by Assumption 8.4 is ergodic. For each let denote
the proportion of time in [0 ] that spends in state ; that is,

1
[ ]

For the flat boundary process we consider only the component perpendicular
to the boundary; that is, we let 0 1 2 . Recall that we are
interested in the constant coefficient case only and, for the flat boundary process,
in the case where the drift of (8.9) satisfies 0. Under these conditions, by
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Assume the jump structure is ergodic (Assumption 7.1, implied
by Assumption 8.4), and let . For any , , and , there are positive
constants and such that for all jump processes satisfying
for all and , for all starting points and all positive ,

Exercise 7.17 the Markov chain (with countable state space) is ergodic, and
we let denote the invariant probability that 0 (i.e., is on the boundary);
see (8.10).

Let be the observed proportion of time that is zero in [0 ]; that is,

1
[ 0]

Thus we have constructed two continuous-time Markov chains with finite and
countable state spaces, respectively. In §7.1 and §7.2 we studied the rates with
which they settle into steady state, and those results are the key to the proofs be-
low. Most of the results concerning those Markov chains can be recovered from
the monograph [Chu] by Chung; however, it is instructive (and sometimes easier)
to obtain the results as a consequence of our previous development; moreover, the
uniformity results appear more naturally.

Now we prove an analogue of Kurtz’s Theorem for the finite levels constant
coefficient process . Recall that , and with
as defined above, (8.6) takes the form

0 8 33

Note that since is invariant, 0 .

0 0

sup

. This follows from Lemma 7.6 and its extension, Exercise 7.8. Let be a
bound on the total jump rate the process undergoes, and a bound on the jump
size:

and max 8 34

We break time [0 ] into intervals of length 6 , and let 3 ,
where max is the maximum number of jump directions at any level.
Let be the number of jumps in direction during the interval
[0 . Since the process is constant coefficient, corresponds
also to the number of jumps of the finite-state Markov chain described in the
text above Exercise 7.8. According to Lemma 7.6 and Exercise 7.8, there is a
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0 and an such that for any ,

max 8 35

Now consider the first interval of time [0 ]. If for all

8 36

then by Equation (8.33),

0 [ 0 ]

which is bounded by 3 by definition of . Moreover, under (8.36) the max-
imal change in an interval of size is, by a similar calculation

sup 0 0

2
2
3

8 37

by definition of , where we assume 1 and 1. Let now
denote the number of jumps in an interval, say [ 1 . Exactly the
same calculations show that, under (8.36),

[ ]
3

sup [ ]
2
3

for each . This means that under (8.36), at an endpoint of a subinterval,
the distance between the two paths could have increased by at most 3 from
the distance at the starting point of that subinterval, so that if (8.36) holds for all

then
max

3
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Given a set of arcs that connect and a probability distribution
on with , there is a set of jump rates such that is the

(unique) invariant measure under and for all .

Using the triangle inequality with (8.37) establishes that in this case

sup

Since the events (8.36) on different subintervals are independent we have from
(8.35)

sup 1

A little algebra shows that this proves the lemma.

Extend Lemma 8.57 to the case where , but possibly
for some [ is defined in Equation (7.2)]. Note that the point

is the uniformity of the result in . Hint: the proof of Lemma 8.57 holds verbatim
for 0 . Choose and approximate any process
satisfying , as well as the limit of the process by increasing
to whenever , while keeping fixed.

Let denote a set of arcs connecting the states 1 of the Markov
chain. With a slight abuse of notation (that will pay off handsomely), we denote
the arc leaving state as , with 1 . This arc leads to state

—see Definition 8.3. In terms of our standard notation, we simply ignore
the first coordinates of and concentrate on the last , describing the finite
state Markov chain. Note that is ergodic (Assumption 7.1) if and only if the
arcs make a (directed) path between any state and any other state ; in short,
connects . Let denote the number of arcs in .

0
1

Note that we can take any subset of that connects , and insist that 0
only when , and that the resulting Markov chain be ergodic.

. This is trivial when 1, so assume 2. We construct the rates
by regarding the arcs in as carrying fluid flow, where the rate of flow along an
arc is . Note that by Definition A.141 [but now allowing arcs

with , so that the term is included in both sums], if we
construct such a flow then the balance equations hold, and so are indeed
a set of rates and their invariant measure. Start by renumbering the states so that
0 1 2 1. Take any arc 1 out of state 1 and set

1 1. This makes the flow along the arc equal to 1 . Continue connecting
arcs end-to-end in a loop-free manner until you arrive back at state one. There is
always such a circuit since connects the states, and we can remove any extra
loops along the circuit without destroying its connectivity. We choose the rate
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Given any number and any set of arcs , define

is invariant for for all

is unique and
where “ is unique” means makes an ergodic chain.

( ) µ ( ) π( )/π( )

π( )µ ( ) π( )

α µ ( )

µ ( )
( ) ( )

π( )

( )
( ) µ ( )

α µ ( ) µ ( )
π( )

π( )
.

π( )

µ ( )
α

( , )

µ ( ) µ ( )

< ( )/

α ( )

>

( ) µ, π π µ, µ ( ) ( ) ,

(δ, ) (µ, π ) ( ) π µ ( ) / ( , δ) ,

π µ

µ
π

, π ( ) µ ( ) ( ) ( . )

π
µ π

(µ, π) π( ) λ ( ) µ ( ) µ ( )
µ ( )

λ ( )
. ( . )

along each arc in the circuit to be 1 , so that the total
amount of flow is preserved at the level 1 . By our ordering of the
states, 1 for all arcs along this circuit.

If this circuit reaches every arc then we are done. If not, set 0 for ev-
ery arc not covered by this circuit. Take an arc that has not been
covered yet, where is the smallest (and hence of smallest probability )
among states where untraversed arcs originate. Make a new loop-free circuit of
arcs from back to (possibly overlapping some arcs that have already
been covered). Along each of the arcs along this circuit define by

1
2

This operation obviously preserves the total flow at level 1 along the new arcs,
and it is easy to verify that the local balance equations (amount of flow entering a
state equals flow leaving the state) remain valid, including the case where a state
or an arc is shared by the two circuits. Continue in this manner until all arcs have
been traversed, and let the resulting rates be . The smallest flow along any
arc is at least , and the largest is at most , which bounds the number of iter-
ations required to cover all arcs [recall we allow an arc from to itself, which
forms a loop, as well as multiple arcs between a pair of states ]. Setting

establishes the lemma.

If we assume that between any two states there is at most one arc in each direc-
tion, then clearly 1 2, and we obtain a universal bound depending
only on and . For our finite levels model, .

0

:

: 0

Note that if is a set of strictly positive rates and if connects then necessarily
the chain is ergodic so that is unique. In this case the definition of

0 8 38

is well posed. For brevity, we shall use the notation also when there is no
uniqueness of , but where no ambiguity arises. For an arbitrary set of rates

and a probability on define also

log 8 39
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Fix that connects and a point . For every positive and
there is a for which the following hold. Let and define
through (8.40). Then there is a pair so that

for all
for all

η, π

η, π +( , ). ( . )

ε
δ > +( , ) η, π

(µ, π ) (δ, δ )

π ( ) π ( ) < ε ( . )

π ( )µ ( ) π ( )η ( ) < ε ( ) ( . )

< ε ( . )

µ, π < +( , ) ε. ( . )

ε < <

ε (α, ) α < α <

π ( ) > α

π ( ) α.

α <

( )
λ ( )

λ ( ) .

π ( ) (η ( ))

π ( )η ( )
η ( )

(η ( ))
η ( ) .

µ ( ) η η(α) >

αη η . ( . )

α η(α) αη(α) ( η)

π ( )η ( ) αη,
η

(η)
ε (α)

Given , Lemma 8.32 implies that there exist so that

and 8 40

0

1 8 41
8 41
8 41
8 41

. Assume without loss of generality that 1 . The proof consists
of showing that the left-hand sides of (8.41a)–(8.41d) are bounded by functions

that go to zero as and go to zero in an appropriate way. Fix 0
, to be specified later, and break the states in into two classes named and

:
means
means

might be empty, but since the set is not empty. Within break up
the states into disjoint communicating classes: choose a state in , and let
consist of all states in so that there is a circuit from to and back, with
arcs in passing only through states in . Choose a state in but outside
to construct the set and repeat. By construction, between any two states in
there is a path going only through states in , and cannot be enlarged without
either violating this property or going through . Note that all the might be
singletons or, at the other extreme, all of might be one class. Define

min log

Then by assumption and so

0 monotonically as

The rates we shall construct will be bounded by 0, defined
through

log 1 8 42

Note that, as 0 we have and log 0. Therefore,
for any ,

max
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for all small, where we substituted to obtain as a function of
alone. Therefore, the total flow between and is at most . We claim
that if and are not both in the same class , then the flow along any arc
with is also at most . To see this, note that any flow that
goes into a set from outside either comes from a state in directly, or must come
from another . But there can be no loops among flows between different sets

, since the sets were defined to be maximal sets that communicate. Therefore
if we trace any flow backward it must eventually come from , and is therefore
bounded by .

We now wish to set all flows outside the s to zero, maintaining the invariant
measure , without making a large change to any flow. It is clear how to do
this: consider all the flow through the network that runs through . Some of it
may run through some s, but the total flow is small, so simply cut it off. The
resulting transition rates, call them , satisfy 0 unless both and

are in the same . To make invariant under the rates , we need
to modify the flows. Each state in and each set is now isolated from all others,
so that they can be assigned any probability, and in particular, the one resulting
from . We only have to verify that the flows within each can be changed by
changing only the rates, and so that the balance equations hold for .
We only need to compensate for a decrease in flow, which is due to our cutting off
the flow from . This can be done with a change in the flow of at most ,
effected by making the appropriate smaller than the original . Under
this construction, if than so that , and therefore

0. Consequently for all arcs .
To define , we increase the probability for states in to , and decrease for

states in by a factor:

for all
for all

where 1 is chosen to make the probabilities sum to one:

1

is close to one since
1

1

Since , (8.41a) holds, with on the right.
Note that is invariant for the rates . This follows since each

does not communicate with any of the other states, so any measure is invariant,
and each communicates only with its fellow members of , so the various

s can have any total amount of probability.
As our final step in the construction of , note that and satisfy the as-

sumptions of Lemma 8.59. So, define as the jump rates that arise from
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Lemma 8.59 that make invariant, and let . The
small parameter depends on , and will be specified in (iia) below. Since
is invariant for the as well as for the , it is invariant for . From
the lower bound on , given in Lemma 8.59, we obtain the lower bound

. Since and 1, we have the upper bound
. Thus the rates are strictly positive, and

for small enough (which depends on ).
It remains to establish (8.41b)–(8.41d). The flows differ from

by

By definition of and it follows that for all small enough. There-
fore, 1 0 as 0 and 0. The change in is
now easy to bound:

where is a bound on the maximal jump size.
Finally, we establish (8.41d). By (8.39)–(8.40), both and are

defined as sums [the latter in terms of ] over and . We find an upper
bound for each of the summands. Fix and and, for brevity, omit the indices
and from , , and . Now

log log

log log log

log log

where for some constant , depending only on . Denote the
remaining two terms by . We check that can be made small using different
bounds over different regions of and .

(i) , that is, .
In this case and . Therefore, for small,

log inf log 8 43

since log 0 for 1. So, in this case we have a bound that is linear in
and decreasing in . Note that this covers the case .
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(ii) , that is, .
(iia) 1 .

log log

log log

But note that the only increase in flow in constructing the appears due to the
addition of the rates . Therefore , and since log 0,

log 2
We now set as

log [ ]
With this choice, 0 and log 0 as 0.

(iib) 1.

log log

and so
log log

log

log 2
We need to show that log 0 as 0. But

log
log

log[ ]
0 as 0 8 44

for our choice of (by an application of l’Hospital’s rule). Finally,
(iic) .

This is easy, since 2 , so that 2 2 log 2 , and we are done.
We conclude that if we choose small enough, (8.41) holds, and then 0 is

chosen so that 1 and .

Show that if the log are bounded, then Lemma 8.61 holds
uniformly in . Moreover, instead of making all rates bounded below, we could
specify a connecting subset of so that arcs outside the subset have rate zero, and
keep the same constants. Hint: just follow the proof of the Lemma.

Show that, given any 0 there is a 0 such that for any
pair with drift there is a pair that has drift
satisfying
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Given a process with jump rates and with an associated invari-
ant measure on define the net drift at zero by

As in (8.9), define the drift associated with the rates as

The set of rates is defined by

For every and with there is a such that for
any process satisfying Assumption 8.8 with jump rates and an invariant measure

with , there exists a such that, for
and for all ,

For every and with there is a such that for
any process satisfying Assumption 8.8 with jump rates and an invariant measure

with and , there exists a
such that for any with ,

Hint: . Now use Lemma 8.61.

The corresponding result for the flat boundary model is easier to derive. In
this case we would like to avoid very large rates, and also rates for which, when
the process is on the boundary, it is indifferent between staying there and mov-
ing inside. Here are the precise definitions [cf. (8.10)]. Recall that our underlying
Markov chain has the positive integers as state space.

Recall the definitions of the drift (8.9) and the invariant probability
(8.10) for the process to be on the boundary 0.

0 1

0 0 0 0 1 0 1 1

1 1

: 0] 8 45

Note that the symbol has a different interpretation in the context of the finite
levels process. We only need the value of at zero for these calculations. The
proofs of the following lemmas are left to Exercise 8.67.

0 0

0 1

0 0

0 0

0]
0

Recall that does not depend on except through , since the jump rates are
constant in each region.
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Theorem 8.68.

Theorem 8.69.
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( )
( )
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Let Assumptions 8.4 (ergodicity) and 8.5 (continuity) hold. Then
uniformly over in compact subsets of , and over , for each
open set ,

Let Assumptions 8.8 (jump structure) and 8.9 (continuity) hold.
Then uniformly over in compact subsets of , for each open set

,

Prove Lemmas 8.65 and 8.66. Hint: use the idea of flows of
Lemma 8.61. We need only to adjust two drifts in order for to avoid 0]:
one from the boundary to the interior, the other from the interior to the boundary.

This section contains proofs of the lower bounds for the finite levels process and
the flat boundary process. The lower bound for the finite levels process is sim-
pler than the bound for the flat boundary process, so we’ll prove it first. Here are
the statements of the theorems: the proofs appear after Lemma 8.72 later in this
section, and at the end of the chapter respectively.

1
[0 ]

lim inf
1

log inf : 0

[0
[0 ]

lim inf
1

log inf : 0

The proof of the bound for finite levels processes goes very much along the lines
of §5.3. The theorems are proved by showing that, for each fixed path , with

inf : 0 , for each 0,

lim lim inf
1

log 8 46

where represents either or as appropriate [this is the same as
(5.32)]. There are two new technicalities. The first has already been discussed:
the equivalence of the local rate functions for the upper and lower bounds. This is
more difficult to prove in this setting, but was established in Theorem 8.19. The
second is a new problem in obtaining uniformity in the convergence of to
for constant coefficient processes. After we divide time into intervals of length ,
we locally change the measure to a constant coefficient process. We don’t have
much control over the coefficients of the new process; they simply solve a min-
imization problem. The process is then supposed to follow the local drift

of the new process. According to Lemma 7.4, the rate of convergence of
to depends on having a lower bound on the jump rates in the new pro-

cess. This is where Lemma 8.61 comes in. It enables us to approximate any jump
process by one from a family that mixes uniformly quickly. This gives us a bound
that holds over all the -intervals and over all relevant changes of measure.
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The lower bound for the flat boundary process requires a few more technicali-
ties. One is related to the derivation of Equation (5.50): the cheapest path between
point and point in time for a constant coefficient flat boundary process is
necessarily a straight line. Since the local rate function can be smaller along the
boundary than in the interior, it might be cheaper for a path to go from to the
boundary, travel along the boundary for a while, and then travel to . This inval-
idates (5.50), which was the starting point for proving the lower bound in §5.3.
This difficulty is resolved by noting that a cheapest path might not be a straight
line, but it can be composed of at most three straight line segments: one down to
the boundary, one along the boundary, and one back from the boundary. (Because
the rate function is not strictly convex on the boundary, the straight line path along
the boundary might not be the only minimal cost path, but convexity assures us
that it is a minimal cost path, so we can use it for constructing a cheapest path.)
This enables us to do all the calculations almost as before. There is also a dif-
ficulty in proving uniform mixing, as for the finite levels model, but it is almost
trivial to fix this technicality for the flat boundary model, since we only need to
make sure that the mixing occurs in the direction. The final technical point for
the flat boundary process is the question of whether the process starts exactly on
the boundary or not at any particular time. We make our estimates for the case

0 0, but when is following a path we don’t know exactly how
high will be. This is fixed by changing the path over a small interval of
time with small cost so that it either leaves the boundary or goes to the boundary.

We begin our proof of the lower bound for the finite levels process with the
change of measure formula. Let the measure correspond to jump rates ,
let correspond to jump rates , and let be the unit vector in the

coordinate direction. As in Equation (5.30), let denote the total number
of jumps (transitions) the process makes in [0 ], let be the time of the
jump, and let denote the direction of the jump. We shall use the notation

or as convenient. Then we have

exp

log 8 47

This follows from Theorem B.6. Now given any continuous path [0 ]
and any 0 we write, as in (5.33),
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Assume makes the Markov chain ergodic. For any fixed
let denote the number of jumps of in . Then for bounded
continuous, uniformly over over starting levels and in compact
sets, for each we have

exp
1

8 48
where initial conditions are not denoted explicitly. Therefore if is chosen so that

1 as then

lim inf
1

log lim inf
1

We now develop the analogue of Lemma 5.52. Fix a set of jump rates
that do not depend on and that make an ergodic process. Let denote
the probability and the expectation with respect to the scaled jump process

with jump rates , starting from an initial position where
is the unit vector in the coordinate direction. As usual is the invariant
measure, which is unique since under these rates is ergodic. Let be the
limit for the process with rates . By (8.33), is a straight line,
and since for these rates is ergodic, is independent of the initial level

. Suppose we are given a set of bounded continuous functions where
the index ranges over the levels (1 ) and the index ranges over the
jump directions on each level (1 ). Let denote the index of
the transition of , where again is the index of the jump direction
and is the level at the start of the jump.

0
[0 ]

1
0

lim
1



2

′

′

′

233

E

R

P

P P

, ε ( )

µ

( )

,

µ

,
(ε)

ε

,

1

0 1 1

1 2
0

0

0
1

2

1

1

0 0 0

1

1

Theorem 8.71.

Proof

Section 8.5. THE LOWER BOUND



[ ] ∑





∫ ∑ ∑

(
∣∣ ∣∣

)

∑

(
∣∣ ∣∣

) (
∣∣ ∣∣

)

∑

→∞ # ∞
=

−

=

′

=

′
∞

#
≤ ≤

∞
−

→∞

%

=

−

#
≤ ≤ ≤ ≤

∞
≤ ≤

∞

=

% %

= ˜ # ∈ # #

= #

# ∈ ∈ { } ∈
≥

˜ # − # ≤

= ∞

=

|# |

˜ |# | − # ≤ − #

|# |

= = =

n x m
d
n

N

j
l j n j

T D

m

k m

i
i i m

d d

x m
t T

n
nC

D

m

n

x m
t T

n
t T t T

i

D

m

j

z N y
n

f z t

m m f y t dt

K T C C
n x m D M K
n n

z t y t C e

C

x t

M T k m K

z t n x nT

z t y t
x nT

n
y t

e
e m K

K k m e

T e J T s j

Given any , , , and there exist positive , and
such that for all , all , all , and any

,

Furthermore,

( ) ( ( ))

π ( ) µ ( ) ( ( )) .

δ ε > (ε)

, . . . , (µ, π ) (δ, )

( ) ( ) > ε . ( . )

(ε)

ε
. ( . )

( )

( ) .

( ) ( )

( ) > ε ( )
( )

> ε ( ) .

( ) ε ∆

∆ ( ) <
ε
.

η ε∆/( ) /∆ ∆

lim
1

In order to prove this lemma we first need to prove Kurtz’s Theorem for finite
levels processes with constant coefficients.

0
1

sup 8 49

lim 8 50

. To prove (8.50), let be a Poisson process with rate

Then is bounded by in probability; that is,

sup sup sup

But from Example 1.13, the rate function for this random variable goes to infinity
superlinearly, and so (8.50) holds.

The estimate (8.49) follows directly from Exercise 7.8. Recall that is the max-
imum of . Given and , divide time into intervals of length such that

4

Also take 2 and let and .
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Proof of Lemma 8.70

Lemma 8.72.

Proof

Proof of the lower bound for finite levels processes, Theorem 8.68

Exercise 8.73.

Assume that makes the Markov chain ergodic, and that the pa-
rameters are bounded and continuous. Then for any ,

and the convergence is uniform over in compact sets and over .

By a union bound,

sup

max max sup 2

max

sup 0 2

The first term on the last line is bounded, by the same argument as before, by a
Poisson random variable with mean at most 4, and so it decays exponentially
in . Each term in the last sum is bounded, by Exercise 7.8, by for some
functions that are all positive. Since is fixed, so is , and the result fol-
lows.

. Using Theorem 8.71, this goes exactly as Lemma 5.52.

As in (5.20), define

log 8 51

[cf. (8.39)] where, since we assume makes the Markov chain ergodic, there is
a unique invariant measure , which we simply denote .

log 0

lim inf
1

log

1

. Exactly as the proof of Corollary 5.53.

. This is left
to the reader, as Exercise 8.73.

Prove Theorem 8.68. Hints: follow the proof of Theorem 5.51.
Since the mesh is fixed, we have a bound on and hence on . Use Lemma
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8.61 to choose new in each interval so that , while preserving
(5.49). These satisfy the conditions of Lemma 8.72.

We proceed to the proof of the lower bound for flat boundary processes. We
start by fixing an absolutely continuous path for which the cost is finite.
Our first step is the construction of a piecewise linear path that is used to
approximate .

Given 0 and , choose so that the change of over any interval of length
is less than 4; that is,

sup 4

This is possible since is continuous and is finite. Furthermore, take smaller
than , and small enough that divides . With the notation

we obviously have the bound 4 . Let and

0

We now define a piecewise linear approximation of . Fix an interval
[ ]. Let

for absolutely continuous . That is, the local cost function is defined in the
usual way, but with the rates 1 fixed at 1 , and 0 fixed at

0 0 [recall that 0 is the projection of onto the boundary].
The cost function is the usual one, but on the interval [ ]. Consider a
cheapest path that starts at and ends at . By Lemma 5.16 we can
choose this path to have one of two forms. It could be a straight line joining
and , which we denote by . Or, it is composed of at most three straight
line segments, one of which runs along the boundary, and the others connect this
segment to the endpoints; we call the cheapest such path . [If only one of
or lies on the boundary then consists of at most two segments. If both
lie on the boundary then .]

Figure 8.74. Construction of for the flat boundary model.
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Lemma 8.76.
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Exercise 8.77.
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Given , define on each interval by

if for all ;
if ;
otherwise.

Recall that is fixed and . Under Assumption 8.8, for
each positive and there exists a constant such that for any set of jump
rates with , all and all as above,

constant rates

[ ]

0

Note that is piecewise linear, and so absolutely continuous, though it is not ev-
erywhere differentiable. We define as the left endpoint of the interval, 0,
in the definition of , and let be the index of the time . (Clearly only if

on each subinterval, and then for each . In general 3 .)

0
0 1

sup

. See Exercise 8.77.

Prove Lemma 8.76. Hints: only the case requires proof.
Fix and , and let be the rate function corresponding to the .
Use Lemma 8.36 to show that for some constants and ,

1 log 1 log

for all . Conclude that implies for all
. Now fix an interval [ ] with for some and denote

and . If is small or then we are done. Otherwise, if is
large

log log

from which a bound on follows. Now do the case where is small.
A similar argument works on the intervals [ ] 1 2.

The next approximation lemma shows that it is not too unlikely for to
stay near . This is the counterpart of Corollary 5.53, the main result used in
proving the lower bound. For fixed and , let

max 8 52

max 8 53

1 8 54

: 1 1 8 55



x0 = 0 t

R

P
1

1

1

+

+

+

237

D D

D
D

j j j

j
j

j j

( ) ( )

(η)

, ,

, ,

0

1

1

1

1
0

0 0

1

0 1 0 1

0 0

0

1

Lemma 8.78.

1 1

1 1

Remark.

Section 8.5. THE LOWER BOUND

%

∈
%

∈

%

# = # =
′

% +

#∈ →∞ #
≤ ≤

+

≤ ≤
+ +

+

∑

∑ ∑

{ ∣∣ ∣∣
}

{ }

∣∣ ∣∣
( )

{
[ ] [ ]

}

[ ] [ ]

x

x

x x

j J

S x x x t A

t s t
A

z t t

n
z t t A

I t t

t

z t t A z t t

t z t t

A I r

t t

i i

i
i

x

k

i
i

x

k

i
i

j
d

j
j

j j

n j j

x S n
x

t t t
n

t
t j j

t t t
n n j n j

j n j n j

T

j j

=
; #

= ; #

= ; # + ; #

↓ ≤ ≤

= # ∈ ≥ # − #

# { } { }

# − #

|# − # |

≥ − # − −

#

|# − # | = = =

= = =

# #

# #

#

τ
λ ( )

( . )

λ λ ( ) ( . )

λ λ ( ) λ ( ) ( . )

w ∆ η >

(η) , w( ) < η . ( . )

ε > ∆ > w( ), ,
η η < η

( ) w( ) < η

( ) w( ) < η

(w) ε( )/ . ( . )

w( )

( ) w( ) < η, ( ) w ( )

( . )
( ) w ( )

w η ε ( )

w( ) w( )

w

Suppose that we have a flat boundary process satisfying Assump-
tions 8.8 (structure of the flat boundary process) and 8.9 (smooth jump rates). For
any there exists a such that with as defined in
Definition 8.75 and defined in (8.54) there is an such that for any , if

then

Furthermore, the same estimate holds when we restrict the endpoints to be on or
off the boundary when is. That is, the same limit holds if we consider the
event

instead. We can even restrict to have and
have the result (8.60).

1
min 1

8 56

1 8 57

max 0 max 1 8 58

Clearly is finite but may diverge as 0. For 0 and 0 define

: 0 2 8 59

0 0

inf lim inf
1

log sup

2 8 60

sup 0 0

8 61
0 0

This lemma is very nearly the lower bound. It says that we can approx-
imate the path to within with cost that is within of .

Lemma 8.78 is proved by considering the four cases determined by whether or
not each starting point and ending point is on or off the boundary.

Figure 8.79. The four types of line segments of .

We break the calculations into bite-size chunks, starting with a useful estimate.
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Lemma 8.81.

Proof

Lemma 8.82.
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Let Assumptions 8.8 and 8.9 hold. For any and any with
, any and any with ,

Let Assumptions 8.8 and 8.9 hold. For any and any with
, any and any with ,

Let be a Poisson random variable with parameter . For any
1 prove that

1
2

1 1
8

Hint: Show that is increasing in when is not an integer. Then for
integer and integer 0 show that

1

since

! 1
and

1 ! !
1 1

and note that for any positive and that

Then since 1 , we obtain

1
2

For integer values of , 1 . This concludes the exercise but can
you show that our bound is exactly half the optimal lower bound of 1 2
1 4?

The next lemmas use some of the constants defined in (8.52)–(8.58).

0

0 sup
1
8

. The left hand side is lower bounded by the probability that has no
jumps except for those in while 0, and has no jumps at all once it hits the
boundary. By Exercise 8.80, the probability that a Poisson ( ) process makes at
least jumps in time is at least when 1. The probability that the process
makes no other kinds of jumps in time is obviously bounded by .

0
0

sup
1
8
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Under Assumption 8.8, given any , , , and there exist
positive , , and such that for all with and all

,

where is, as usual, the most likely path under the measure :

where is the stationary measure of under the law (see (7.14)). Fur-
thermore, the function grows superlinearly at :

Let Assumptions 8.8 and 8.9 hold and assume the process is
ergodic under the rates . Then for bounded continuous, uniformly over

in compact sets with , for each we have

. This is just the reverse of Lemma 8.81. Consider jumps of away
from the boundary rather than towards it. The new point is that the process might
overshoot the appropriate level, since the jumps away from the boundary have
integer sizes that are not necessarily one. If the process overshoots, it does so by
at most a constant amount.

For any set of rates in let ( ) denote the probability distribution
(respectively expectation) of the scaled jump process with jump rates , with

0 . Let denote the induced drift process with rates . Recall
that rates in have a uniformly negative drift, and under Assumption 8.8
they mix the interior and boundary uniformly well. Moreover, the process
is necessarily an ergodic Markov chain.

0
0

sup 8 62

0 0 1 1 1

0
8 63

0

lim

. This follows from Lemma 7.20 in exactly the same way that Theorem 8.71
followed from Exercise 7.8.

Consider the path . If 0 then it is easy to see that is a straight
line. Suppose we are given a set of bounded continuous functions where
the index is zero or one depending on whether 0 or 1, and the index
ranges over the jump directions on each level (1 ). Let denote the
index of the transition of , where again is the index of the jump
direction , and indicates whether or not the process is on the boundary at
the start of the jump. As before, is the number of jumps of on [0 ]. As
usual 0 is the invariant measure of the boundary, and 1 1 0 is
the invariant measure of the interior, which is unique if we assume that is
ergodic.

0 0
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Let Assumption 8.8 hold and suppose that for
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∆

w( ) ( ) < ε ,

lim
1

lim
1

. This goes exactly as Lemma 5.52, using Lemma 8.83.

For the next result recall the definition (8.51) of the function that defines the
local rate function:

log

0 0

lim inf
1

log

Note that the assumption implies that the path lies
on the boundary, that is, 0. So this corollary is useful for examining
paths that start and end on the boundary. Furthermore, since , we
can get a uniform lower bound on the probability that 0.

. Exactly as in the proof of Corollary 5.53.

In order to prove Lemma 8.78, we choose constants in the following order.
1. Choose a 0; this is the bound on the error in the cost .
2. Choose an 0 small enough with respect to that the following inequal-

ities hold. First take 4 in Theorem 8.37, and let be the resulting so
that (8.27) holds with instead of . Let . We will perform
estimates for .

3. Choose small enough so that for each [0 ],

max sup

Furthermore, choose small enough that

sup
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where is constructed by Definition 8.75.
4. With fixed, find the following:

min

min : 0

max : 0 or 0

Then choose small with respect to , , and . This also gives a bound
on how close the drift of is to . This also gives rise to the constants and
so that .

5. Finally, we let for each fixed choice of all the constants involved in
the construction.

. We will only outline the proof of this lemma, since all
the pieces have already been given, and there is nothing new in the reasoning.
The reader is invited to fill in the details. As illustrated in Figure 8.79, the lemma
is proved by dividing considerations into four cases. When the starting and end-
ing positions are both on or both off the boundary, the lemma reduces to Corol-
lary 8.85 (both on the boundary) or Corollary 5.53 (both off the boundary). When
one endpoint is on and the other is off, we use Lemmas 8.81 and 8.82 to show that
the path can be pushed on or off the boundary at the endpoints as needed in small
time and with small cost, and then estimate the behavior of the path during the
remainder of the interval.

All four cases begin with the construction of a change of measure that has its
center (see (8.63)) equal to on the interval [ ], and also achieves the
minimal cost with respect to jump rates fixed at time . Such a measure exists by
Lemma 8.32. Then, if the interval [ ] has both endpoints and
on the boundary, we use Lemma 8.66 to change so that its center is no more
than from and so that is in . Here and are functions of
given by Lemma 8.66.

When the left-hand endpoint is on the boundary 0 but the
right-hand endpoint is not, we perform the following construction. First we use
Lemma 8.82 with to use up a little time ( ) and a little probability
(exp ) but pushing the process away from the boundary. Then we can
make sure that follows parallel to for the remainder of the interval. We
make sure that it doesn’t hit the boundary again by setting the neighborhood size
to 2. The discrepancy between and grows by the following mecha-
nisms. The initial interval has move in a direction that has nothing to do
with . But we know that is no more than from its starting point, and

has gone no more than during this time by (8.52). Therefore they move
apart no more than a constant times . Now they move parallel and grow apart no
more than 2 during the remaining time.



1

1 1

242

+

+ +

′

n
n

j j

n
j j j

#
# #

#
#

− − ≤

#

8.6. End Notes

z t
z t t

t t Q
Q

z t
t Q t t

e
Q

Chapter 8. BOUNDARY THEORY

( )
( ) w( ) η

η , η <
w

( )
∆ η/ ∆

η
η w

w ∆ η/

Proof of the lower bound for flat boundary processes, Theorem 8.69

Now suppose that the right-hand endpoint is on the boundary but the left-hand
endpoint is not. We need to see the earliest time that the path might hit the
boundary. The initial discrepancy between and is , and the discrep-
ancy grows by no more than over the interval [ ]. Suppose that 2
(recall is the smallest distance an endpoint of can be above the boundary if
it is nonzero). Then the earliest that the process might reach the boundary
is 2 (the interval ). Now the highest the process might
be at this time is 4 . Then we use Lemma 8.81 to push the process down to the
boundary, moving no more than 4 in the process, while moves by no more
than 2 . This finishes the proof.

.
Direct from Lemma 8.78 along the lines of the proof of Theorem 8.68.

As pointed out in the text, the approach to the upper bound follows [DEW]. The
lower bound follows the usual procedure for both types of processes considered,
but the key Lemma 8.61 for the finite levels process is new, as is the finite levels
process itself.

Others have approached this subject with a variety of techniques. The new book
by Dupuis and Ellis [DE2] is a general approach to proving the existence of large
deviations principles for a wide variety of processes with discontinuous rates. Pre-
viously, these authors [DE1] gave a proof of the large deviations principle for a
discrete-time process with a discontinuity in the interior of the state space (or, if
you like, the state space is two half-spaces joined at the boundary). The large de-
viations principle for the flat boundary process was developed independently by
Ignatyuk and Scherbakov [IS].
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Applications

This half of the book deals with applications of the theory of large deviations to
queues, communication systems, and computing. The chapters are meant to be
largely independent of each other, except that several chapters are based on cal-
culations and ideas from Chapter 11, the 1 queue, especially §11.5, and to
a lesser extent §11.4 and 11.6. Even though these are applications, there is some
theoretical discussion, usually under the rubric “justification” in most chapters,
because the theory has to be modified, extended, or simplified for most of these ap-
plications. This is despite our having written the first half of the book specifically
for these applications! This is a general lament of those trying to apply large de-
viations (or most other “applied mathematics” techniques): the theory just never
quite seems to fit. We hope that the grounding you get in the present book will
enable you to approach your own applications successfully.

Despite the diversity of applications and requisite theory, almost all the appli-
cations are approached the same way. Here is how we suggest you approach prob-
lems, either in this book or in studying your own application:

1. Make a Markov model of the process (this already rules out many applica-
tions).

2. Scale the problem, if necessary, so that jump rates are of order and jumps
are of order 1 for some large parameter .

3. Calculate . This step alone will usually provide you with most of the
insight needed for your problem. Analyzing how the system will most likely
behave, calculating the attracting points of , and seeing how it behaves
as a function of the problem’s parameters is often enough information in prac-
tice. This is usually easy to do, at least numerically, since it involves solving
a system of ordinary differential equations.

4. See if the issue of convergence to (Kurtz’s Theorem) for this problem
is covered by the theory as developed in this book or another source. If so,
great! If not, try to extend the theory to cover the problem at hand.

5. Based on your analysis from step 3, and on the problem at hand, write down
the appropriate large deviations rate function. Set up the questions you want
answered, and write (formally!) the corresponding variational problems.

6. Solve each variational problem: analytically, or numerically, if necessary.
See how the solution behaves as a function of the problem’s parameters.

7. See if the problem is covered by the theory as developed in this book or an-
other source. If not, try to extend the theory to cover the problem at hand.

Note that in some cases Kurtz’s Theorem is established as a consequence of a
large deviations principle, in which case step 4 becomes a part of step 7.

We strongly suggest leaving steps 4 and 7, the justifications, to the end. First,
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do

verification theorem

guessing

if the answer isn’t very informative, then what have you lost if it’s not justified?
And if you can’t solve the variational problem anyway, then why bother trying
to justify it? And if the solutions tell you something, then you will be much
more motivated to try to justify them, so much more likely to succeed. This is
also consistent with the way most variational problems should be approached. It
is usually quite difficult to justify every step in the derivation of an analytic so-
lution. However, if by some mysterious way you have arrived at a solution that
you suspect to be correct, then a such as Theorem C.1 can
be used to check that this is indeed a kosher solution, and often even to certify
its uniqueness. Some intuition into variational problems, as well as statements of
the theorems that we use, are collected in Appendix C. The application chapters
should be read with this philosophy in mind: the purpose of most calculations is
to show how to go about a solution to the variational problem. There is
no point in trying to be rigorous at this stage, since it is much easier to check that
the solution we have guessed is indeed the right one.

There are many tricks that we and others have developed for solving the varia-
tional problems that arise in large deviations problems. Most of these tricks work
best on one-dimensional problems; see §11.5. Often, the key to solving a high
dimensional problem is to reduce it to one-dimensional problem(s). Sometimes
some insight can be gained by simplifying the problem in other ways, too. In
short, large deviations is not a panacea, and you will have to be as clever and dili-
gent as you would when using any other technique in applied mathematics.

The first two application chapters, “allocating independent subtasks” (on par-
allel processors) and “parallel algorithms: rollback,” require no extra theory, and
are independent of all other applications. This is why they are given first. All sub-
sequent applications use techniques and calculations from Chapter 11. This is the
chapter you should read first if you are interested in performance analysis.

Erlang’s model is the basis of all circuit-switched communication. The Anick-
Mitra-Sondhi model is the basis of all packet-switched communication. And the
Aloha model is the basis of all multiple-access channels. These three chapters,
then, cover all the basic models of communication networks. Information theory
is outside the scope of this book, although these subjects have also benefitted re-
cently from large deviations theory; see [Bu, DZ] and references therein.

The other chapters largely concern models that arise in parallel computation.
None of them are as basic as the communication models, possibly excepting the
model of rollback as developed in Chapter 10. They may be scattershot, but also
may be useful; take your pick.

The degree to which this part is independent of the first part of the book depends
on how much you are willing to trust our word. Familiarity with the processes
and the scaling that we use is necessary: these are covered in Chapter 4. Some
familiarity with the statements of the large deviations theorems is also necessary:
this is covered in the introductory parts of Chapters 5 and 6, and in §6.4. Finally,
at least the intuitive part of the calculus of variations, as sketched in Appendix C
is indispensable. And now, time to dive in, head first!
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Chapter 9

Allocating Independent Subtasks

In this chapter we touch the surface of an important problem: How should jobs
be allocated on parallel processors? The subject is much too broad and deep even
to be introduced properly here. We content ourselves with the presentation of a
very simple model, which is nonetheless important and moreover is amenable to
analysis via large deviations. We need nothing more from large deviations theory
than Chernoff’s Theorem 1.5 or 1.10. We introduce the useful notions of charac-
teristic maximum and increasing failure rate, and we bring out a correspondence
between Chernoff’s Theorem and the central limit theorem.

We consider a computer consisting of a number of processors, memory mod-
ules, and a communication network between processors and memory. On such
machines, one is often confronted with solving a task composed of many indepen-
dent subtasks (or jobs) where it is necessary to synchronize the processors after all
of the subtasks have been processed. This models, for instance, a single fork and
join.

Let be the number of processors and be the number of subtasks. We as-
sume that assigning one or more subtasks to a processor entails some overhead.
Overhead may arise from communication delays, memory delays, or contention
between processors for various resources. We assume that the overhead is inde-
pendent of the number of subtasks assigned. This could be the case, for example,
if there is a central job queue at one of the memory modules, and the main delay
is getting to the job queue, not the process of acquiring jobs once there. The time
may be deterministic or an independent random variable.

One way to allocate the subtasks would be to assign to each proces-
sor. The problem here is that the processors may finish at wildly different times,
and many processors will be idled until the last one finishes. Another way is to as-
sign them one at a time; this would seem to result in the least difference between
finishing times, but might incur excessive delay due to the overhead of performing
many job assignments for each processor. Finally, one can imagine an interme-
diate scheme where subtasks are dynamically assigned in “batches,” i.e., several
at a time, with the idea of keeping the finishing times fairly even but not adding
too much overhead. We evaluate the efficiency of parceling out all the tasks at
once, and show that this algorithm is not too bad compared to an optimal alloca-
tion. Clearly, in practice things may be much more complicated. For instance,
could vary with time, the subtasks may be statistically dependent, and they may
not be identically distributed. For an overview and some results on models with
synchronization constraints, see [BaM].
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Chapter 9. ALLOCATING INDEPENDENT SUBTASKS

The distribution function is
said to have an increasing failure rate (abbreviated IFR) if (i.e., it is the
distribution function of a positive random variable) and if for all ,

is monotone decreasing in .

When has a density then this is equivalent to

is monotone increasing in .

1. The sum of independent IFR random variables is IFR [BP Chapter 4 Theorem
4.2].

To summarize, our model is as follows. There are processors, initially idle.
At 0 they each take subtasks from a job queue, each experiencing
a delay in that access. The processors then continue to run independently until
all the jobs are done. Running times of the subtasks are independent identically
distributed (i.i.d.) random variables possessing a moment generating function (so
that Chernoff’s Theorem can be applied). The time we are trying to estimate is

max

where represents the running time of processor and is the sum of 1 in-
dependent random variables: one representing the overhead, and representing
the processing time of each subtask. is sometimes called the makespan.

The precise assumptions are given in Corollary 9.13 below. The corollary is an
immediate consequence of Lemmas 9.6 and 9.9 and Theorems 9.7 and 9.8, which
provide estimates of when there is no overhead. The most restrictive assump-
tion is that the distribution function of running times (and overhead) has an in-
creasing failure rate (IFR, Definition 9.1 below). This assumption excludes many
pathological distributions. However, it is general enough to include the exponen-
tial, gamma, Weibull, uniform, deterministic, and truncated normal distributions.
The reader will note that we actually make use of a much weaker assumption.
However, the IFR assumption is essential in a more complete analysis, and we
introduce it here more for pedagogic purposes than mathematical necessity.

In the section we present the notion of IFR distributions, which are used exten-
sively in reliability theory [BP]. We then present the notion of characteristic max-
imum and motivate its usefulness.

[BP Chapter 3, Definition 1.1]
0 0

0

1
1

1

Note that our definition includes the borderline case of exponential distribu-
tions, which have constant failure rate. Intuitively, an IFR random variable shows
aging. Here are some properties of IFR distributions.
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2. The following are IFR distributions [BP Chapter 3]:
a. Exponential
b. Gamma with , where is the mean, the standard deviation
c. Weibull with rate
d. Truncated normal (i.e., normal constrained to be positive)
e. Uniform on the interval for any
f. Constant for any .

The characteristic maximum of a random variable with distri-
bution function is .

1
1

0 0
0

Our analysis is also based on the notion of the characteristic maximum. This
is a good estimate of the expected value of the maximum of a large number of
independent random variables. We shall introduce this notion, show how it re-
lates to the distribution of the maximum, and then devote ourselves to methods of
obtaining estimates of the characteristic maximum.

Let be random variables with common distribution function

inf : 1 1

If is continuous then obviously is a solution of the equation

1
1

9 1

However, this equation may have many solutions, in which case is the small-
est. If is not continuous, then (9.1) may not have a solution. This is likely to be
the case for discrete distributions.

For an exponential distribution function 1 , show
that log .

Let be a standard normal distribution:

1
2

From the well-known inequalities [Mc, p. 4]

2
1

2
9 2

obtain the inequalities [LR1, p. 287]

2 log log log 3 2 log log log for 5



248

[ ]

(
∑

)

∑

E

P

E E

E

P

P

E

E

→∞

=

=

→∞

→∞

→∞

→∞

1 2

1

1

1
1

1

1

1 2

1

1 2

1 2

1

p
p

p p

p p p

i i p

p p

p

i
i

p

i
i

p

p p
p

x

p p p

x

p
p

p

=

{ } ≤ =

=

=

=

=
= · =

{ } ≤ = − →

− +
−

=

{ } − ≤

−
− =

{ }
≤

Lemma 9.6.

Proof 1

Theorem 9.7 .

Theorem 9.8 .

Chapter 9. ALLOCATING INDEPENDENT SUBTASKS

m
m

G x

Y Y
G

Y Y m

Y Y m e

X Y m

Y Y m X

X

p Y m
p p

Y Y m p e

G

G x c
G x

c

Y Y

Y Y m

Y Y

G

G cx
G x

c

Y Y

Y Y
m

( )

, , . . .

( , . . . , ) ( . )

( , . . . , ) / . ( . )

>

( , . . . ,

( )

( > )

/ .

( , . . . , ) ( / ) /

( )

( )
> .

, , . . .

( , . . . , ) . ( . )

, , . . .

( )

( )
> .

, , . . .

( , . . . , )
. ( . )

Let be identically distributed with a continuous distribu-
tion function . Then

number of that exceed

regardless of their statistical dependence. If they are also independent then

Suppose that is continuous, and

for all

Then, no matter how the are dependent,

If are independent then equality holds in (9.5).

Suppose that is continuous, and

for all

Then, no matter how are dependent,

The utility of the characteristic maximum will be brought out in four statements.
The first two are immediate consequences of the definition of , and the latter
are strong asymptotic estimates of the mean of the maximum in terms of . We
assume that is continuous: this is convenient simply because (9.1) holds.
The reader is invited to explore the extensions at his peril.

1 9 3

lim max 1 9 4

. Let . Then

number of that exceed )

1 1

If they are independent then max 1 1 1 .

[LR1, p. 287]

lim
1

1
0 0

lim max 0 9 5

[LR1, p. 287]

lim
1
1

0 1

lim
max

1 9 6
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The first fact of Lemma 9.6 states that the expected number of observations
that exceed is equal to one, regardless of how are de-

pendent. The second states that, for independent random variables, is approx-
imately the 1 th quantile of the distribution of the maximum. The two theo-
rems state that, under certain conditions on the tails of the distribution , the
characteristic maximum is a good estimate of the mean of the maximum. Theo-
rem 9.7 says that is very close to max , whereas Theorem 9.8
only states that grows faster than max . The condition
on in Theorem 9.7 is that the tail of at is much larger than the tail at
plus a fixed distance, whereas in Theorem 9.8 the tail at is large compared to the
tail at times a fixed amount.

Only Theorem 9.8 will be used in our analysis; the other facts are to give the
reader a feel for the utility of . Theorem 9.7 could be used in special cases for
better bounds than we obtain with Theorem 9.8. These theorems are proved also
in [LR2 p. 100], and we will not prove them here. For more information, see also
Galambos [Gal, Chapter 1, Exercises 15 and 16].

We now present a simple lemma showing that the hypothesis of Theorem 9.8 is
satisfied for continuous IFR distributions.

lim
1
1

0 1 9 7

. From the definition of IFR, [1 ] [1 ] is a decreasing
function of for each 0, and is clearly less than one for large values of . Fix

1 and 0 and let be much larger than . Denote

max integer : 9 8

Then as . Hence
1
1

1
1

1 2
1

1
1

1
1

which converges to zero as for each 1 and 0.

Returning to the problem of estimating the makespan , consider first the case
without overhead, so that

max and 9 9
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where the are independent subtasks with distribution function . We have
the following straightforward procedure for estimating . Find as the

-fold convolution of and then find . Then Theorem 9.8 states that

1 for large.

A similar procedure would allow also to incorporate the (independent) overhead:
this is the content of Corollary 9.13 below. Unfortunately this procedure is diffi-
cult to carry out except for some special cases, because it may be difficult to cal-
culate . We shall therefore sketch a general method of estimating for
large. This estimate requires that the tail of has an exponential bound, and
that grows faster than log .

Let , where the are independent with con-
tinuous distribution , mean , and standard deviation . Suppose that for some

0
9 10

Show by formal calculation that

lim sup
2 log

log
9 11

That is,
2 log log 9 12

Hint: define

9 13

9 14

Recall that
1

inf 9 15

By definition, is the solution to the equation

1
9 16

Therefore,

1
1

log
9 17
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If is IFR, then the estimate of Exercise 9.10 implies
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since log is small. So the problem has essentially been reduced to finding
the number that satisfies

inf 1
log

9 18

yielding an estimate . Expand about the point 0 in a two-term
Taylor series with remainder, and find

2 log
log

2 log log

9 19

Equivalently, you can expand the Chernoff rate near as

2

Since log is large, the error term in 9.10 is log log .

2 log log 9 20

. This is immediate from Exercise 9.10 and Lemma 9.9.

Comparing this with the result of Exercise 9.5, we see that in this limit, the Nor-
mal law derived from the central limit theorem and the estimate from Chernoff’s
Theorem agree to the lowest order. (In the jargon of matched asymptotic expan-
sions, the inner expansion of large deviations matches the outer expansion of the
central limit theorem). This formal calculation can be made precise: this is done,
for example, in [Ne1, Ne2] and [Ree]. The delicate point here is the errors in the
approximations, since generally the location where a function takes a value is very
sensitive to changes in the function.

There are some circumstances where log might not be large even though
is large. We can still use the theory of large deviations to estimate in

any particular case, although there does not seem to be a general statement corre-
sponding to Exercise 9.10.

Show that for the exponential distribution, when log is large
then

log
log

log

The analysis of the model with random overhead is subsumed by our previous
analysis, in the following way. Suppose that it takes processor time to access
the job queue. The makespan is then given by (9.9), but with
replacing . Let be the characteristic maximum of .
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Corollary 9.13.

Proof

Definition 9.14.

Exercise 9.15.

Y Y
i

Y

Y Y m m

z
n z z

z z z

i
i

x x i
x K

N K
N K K

N
K N s

N K s K K

K n p

K

K
K K n p

K n p
T p

p K n p

T pT p

, , . . .
v( )

, . . . ,

v( ) µ
σ v ( )

v ( )

σ (σ / )

(µ, σ ) v
(µ v/ , σ )

(µ, σ )
(v, )

(µ v/ , σ / )

< /

v / v
/

v ( )
/

( )/ ( )

Let the processing times be i.i.d. IFR random vari-
ables with a continuous distribution function. Let be i.i.d. IFR random vari-
ables, independent of the processing times , with a continuous distribution func-
tion. Then the conclusions of Lemmas 9.6 and 9.9 and Theorems 9.7 and 9.8 hold
(with replacing and replacing ).

A random variable has an infinitely divisible distribution if,
for each positive integer , there are i.i.d. random variables so that

.

. Immediate; just check that all the assumptions hold.

The formal approximation of Exercise 9.10 can be extended to cover the case
with overhead. To do that, we need the following definition.

Assume in addition that is infinitely divisible with mean
and standard deviation , and that satisfies (9.10). Compute (formally!)
the appropriate extension of Equation (9.12). Hint: let . The
standard deviation of is then .

Examples of infinitely divisible distributions are: any constant, and the gamma
or normal distributions. For instance, the system in which jobs are (normally) dis-
tributed , the batch size is , and overhead is a constant , is equiva-
lent to the system with jobs distributed , batch size , and no
overhead. The system in which jobs are distributed , the batch size is

, and the overhead is distributed , is equivalent to the system with jobs
distributed , batch size , and no overhead.

The foregoing analysis can be extended to find an approximate value of the ex-
pected makespan when , that is, when each processor takes a number of
batches. There is an initial period when all processors are busy, repeatedly taking
jobs, at a time from the central queue, and then finishing the batches one at a
time. The last batch to be taken starts the final phase of operations, when all the
processors simply finish whatever they have at the moment. Under the assump-
tion that the jobs have IFR service requirements, we expect that the distribution
of remaining times is in some sense smaller than their original distribution. It is
therefore straightforward to come up with bounds and approximations for the ex-
pected lengths of each of the phases of operation. See [KrW] for details.

Now consider the more general problem of finding an optimal allocation of the
jobs among the processors. We could assign the jobs, say, at a time. It seems
clear that 1 is optimal when 0, and is optimal when is
very large. We shall now show that may be acceptable even in the
worst case, i.e., when 0. Let be the makespan (time it takes to solve the
problem) using processors and batches of size . In parallel process-
ing the standard measures of quality are speedup and efficiency, which are closely
related. The efficiency is defined to be 1 and is always between zero
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and one. It measures how efficiently each processor is being used relative to a se-
quential machine (uniprocessor). An efficiency of around one half is usually con-
sidered to be very good. Since our setup is random, we will define efficiency by

1 . When 0, , and log is large, our analysis
showed that

2 log

2
log 9 21

Our definition of efficiency therefore gives

efficiency
2

1

1 2

9 22

For many applications with positive random variables, is likely to be less
than one. (If the jobs are distributed normally, they could be positive with high
probability only if is no larger than 1 4). The analysis holds if log
is large, which has already been assumed. So, even if log is about one,

efficiency
1

1 2
0 4

Much more is known about the problem. See [Ri] and [WeG] for some recent
results and references. There are surprises for everyone in this subject. For ex-
ample, [Gr] has constructed a sequence of 20 job lengths that finish more quickly
when allocated one at a time and in order to two processors than to three, and four
processors take longer yet! This chapter is essentially an abbreviated version of
[KrW].
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10.1. Rollback Algorithms

Chapter 10

Parallel Algorithms: Rollback

This chapter contains a description and analysis of a model arising in algorithms
for parallel computing. The mathematical model is a branching random walk; this
model is studied in Chapter 3.

As computer chips approach physical limits, practitioners turn to parallel com-
putation for increased speed. This section is concerned with a parallel algorithm
for parallel execution of event-driven simulation, such as calls in a telephone net-
work. The idea is also applicable to scientific computations, business programs,
etc.

To introduce the idea behind the algorithm, consider a discrete-time system
consisting of a computer with two processors. At odd times ( 1 3 5 ) odd-
numbered programs are routed to processor 1, and at even times ( 2 4 6 )
even-numbered programs are routed to processor 2. Execution of each program
takes one unit of time. This routing clearly does not lead to an efficient use of re-
sources, as each processor is idle half the time. If we could route the programs
to each processor as soon as the processor becomes available, we would increase
the parallelism of the computation, and the computation time would be halved.
Doing this makes each processor have its own idea of what the (program) time is;
this is called its “virtual time.”

Now suppose this algorithm is implemented, and that program 3 computes the
value of some variable, say , at the end of its execution (time 4), and that this
value is needed by program 4 about the middle of its execution (time 4 5). But
programs 3 and 4 are now executed concurrently, so that when processor 2 is at
(its virtual) time 4 5 and needs to read the value of , processor 1 is at (his virtual)
time 3 5, and has not yet computed the final value of . Thus, program 4 reads
(and uses) the value of before its final evaluation, so that the value used may be
incorrect.

We come to the conclusion that disposing of the (time) synchronization between
the processors leads to faster execution, but the result may be erroneous. This is
not very useful but don’t despair! Here is a way out.

To each computation of a value of a variable we associate the time that it was
computed (in terms of the execution time of the original, not the speeded-up pro-
gram, or equivalently in terms of the virtual time); call this the “time-stamp” of
that computation. In addition, whenever a processor computes a value of a vari-
able that is to be used by another processor, it sends that value together with its
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computation time. In our speeded-up example, processor 1 (as part of program 3)
would send the value to processor 2, with the time-stamp 4, which is the time it
was supposed to be computed. Now processor 2 receives, at the end of execution
of program 4 (which is its virtual time 5), the value of with a time-stamp 4. But
since program 4 already used a value for (at virtual time 4 5), it becomes clear
that a mistake was made.

Figure 10.1. Schematic of parallel execution of processes.

This communications and time-stamping mechanism provides a way to detect
errors. In order to correct these faults, each processor needs to keep track of its
past states, and restart the computation from the point the error was made. In ad-
dition, each processor keeps track of variables it sends to other processors, with
their respective time-stamps. The mechanism of restarting, which involves mov-
ing the virtual-time , is called rollback.

But things are not so simple; for suppose in addition that program 5 starts by
using a variable, say , whose value is computed slightly before the end of pro-
gram 4. Then this value is computed prior to the discovery of the error, and upon
discovery of its error, program 4 should notify program 5 (at processor 1) that the
value of may be incorrect. Thus a secondary rollback occurs. In general, we
may get a cascade of such secondary rollbacks.

Now that we have mastered the ideas of virtual time, time-stamps and rollback,
let us go beyond the two-processor system. Imagine a huge system consisting of
many processors, each running according to its own (virtual-time) clock, and em-
ploying a time-stamp—rollback algorithm to correct errors. It seems clear that
this would be efficient when few rollbacks occur, but could be wasteful if a lot of
time is spent on recovery from errors.

To figure out how many rollbacks are to be expected from a particular system,
consider the growth of a single rollback. Assume processor 2 discovers at virtual
time 5 that it has made a mistake at virtual time 4 5. It would then be prudent
to assume that all computations done during the interval [4 5 5] are in error. In
particular, any value of a variable that was computed during that interval and used
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by other processors is suspect. Therefore, processor 2 needs to send “cancellation
messages,” or warning messages, to any such processor regarding any such com-
putation. These correction messages need to carry the time-stamp of the corrected
variable.

Now repeat the same reasoning for each of the recipient processors. You obtain
a tree (actually, a graph), with a node at each processor that participates in this
process. Note that when a processor sends a correction message to another pro-
cessor, that second processor is affected by the correction only if the time-stamp
of the correction is in the processor’s (virtual) past, for otherwise the information
that is corrected was not used as yet.

In order to analyze this phenomenon we need, of course, to describe both the
pullulation of the graph, as well as the size of the rollback generated at each pro-
cessor. Since a precise analysis, or even a construction of a precise model, seems
difficult, we create a model that upper bounds the damage caused by rollback. We
assume that the system is large, and that communication is local. That is, each pro-
cessor communicates with (and therefore can initiate rollback in) a fixed, small
(random) number of other processors. We make the following assumptions in our
upper bounding model:
A1. The network is infinite in size, and homogeneous in structure.
A2. The graph is a tree, i.e., there are no loops.
A3. The number of branches of this tree at each point, which is the number of

processors any one typical processor is “connected to,” is a random variable
with mean 1, independent of all other random variables around.

A4. The change in the size of rollback in one step is a random variable with neg-
ative mean, independent of all other random variables around.

Assumptions A1 and A2 clearly increase the number of processors involved
in any one rollback “snowball;” A1 increases the number of nodes, and A2 says
that each rollback message finds a fresh processor to attack, even if in the origi-
nal model several messages are sent to the same processor. A3 restricts the class
of systems to which our analysis applies, but large systems tend to have such re-
strictions in order to avoid excessive overhead due to internal communications.
A4 states that the design of the system was careful enough, so that rollback in one
step does not induce (statistically) increased rollback in the next step. To complete
the description of the resulting process, assume a rollback of size has started
somewhere. From Assumptions A1–A3 the process that goes through all proces-
sors that could potentially be involved in the rollback is a standard branching pro-
cess (see §3.2). From Assumption A4, going from the root processor along any
sequence of branches of this tree, we obtain a random walk (§3.1). This com-
bined process is called a “Branching random walk;” for a formal definition and
construction, see §3.2. However, our process is slightly different, since not ev-
ery communication results in a rollback. As mentioned above, if the time-stamp
of the correction message is in the (virtual) future of a processor, it need not roll
back. But if a processor does not roll back, it does not propagate the rollback pro-
cess further. Thus our process is obtained by “trimming” a branching random walk
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Assume A1–A4, and that .
If then
(i) with probability one, every rollback eventually dies.

(ii) Moreover, the total number of nodes involved in a single rollback has fi-
nite mean.

If , then
(iii) each rollback tree has a positive probability of surviving indefinitely.

Moreover, the expected number of nodes at generation that are involved
grows exponentially fast.

tree: whenever the total rollback obtains a negative value, that node of the branch-
ing process (processor) and all subsequence nodes and branches are killed. We
call the process resulting from this modification a “branching random walk with a
barrier.” This process was constructed and analyzed in §3.2. We now apply these
results to our model. The reader interested in more information about the rollback
mechanism and its analysis should consult [LSW].

Theorem 3.17 gives us the tools to identify the conditions under which rollback is
guaranteed to expire in finite time. Since the analysis applies to our upper bound,
the conditions are conservative. Experimental results suggest, however, that for
some systems our bounds are tight.

Denote by the distribution of the change in rollback size, and let denote
the mean number of offspring of a node. Define through (1.4), where is dis-
tributed according to .

0 1
log 0

log 0

. (i) and (iii) are immediate consequences of Theorem 3.17. To obtain (ii),
fix 0 0 log so that log 0 0. From Theorem 3.17(i),
for some ,

1
1

Since is finite for each we have (ii).

Theorem 10.2(iii) implies that if rollbacks are generated often, then
with high probability, eventually there will be a rollback that will survive, and
hence involve an unbounded number of nodes.

Since this is an upper bounding model, it can give conditions that guarantee
stability of rollback for a class of systems. However, in order to analyze the ef-
ficiency of such algorithms we need also to analyze the number of rollbacks that
arise. In order to analyze their memory requirements we need to analyze the size
of rollbacks. This is done in [LSW], where conditions for stability are given. In
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[BLS] it is shown that if the initial rollback is large, then (asymptotically) all roll-
backs initialized by this rollback will be no larger.

Let us now apply this theorem to get concrete information about the stability of
a simple system. Suppose we can model the changes in rollback size as random
variables that take the values 1 and with probability and 1 respectively.
The mean change in rollback size is 1 , which is negative whenever

.
For 1, we have

0 sup log 1

Differentiating 1 to locate the maximum, we get a quadratic equa-
tion in and substituting the solution 1 yields

0 log 2 1

This implies that for 2 the critical value of that separates the stable and
unstable regions is

2 3
4

0 066987

For 1 2,

0 log
1
2

1
1

The stability condition for 2 is therefore

1 1 1
However, this condition does not hold for any finite value of . Therefore, it is
not possible to obtain stability when 1 2!

Verify the calculations of Examples 10.3 and 10.4. Compute the
critical values of for 2, as a function of . Compare to the critical value
obtained from the naı̈ve requirement that the mean step size is negative.

For 1, the critical value of as a function of is
1
2

1 1

The following qualitative statements are immediate:
(i) increases to 1 2 as decreases to one.

(ii) increases to 1 2 much more slowly than decreases to one.
(iii) For large, 1 4 .

It is also possible to obtain some explicit expressions for ; see
[BLS].
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Chapter 11
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µ
< . ( . )

ρ <

( ) ( )
/ /

This chapter contains a partial study of the 1 queue from the point of view
of large deviations. This is a study because nearly any question one can
ask of the 1 queue can be answered, and we ask only a few. While many
of our results have been obtained before by different methods, we hope that you
will find the present approach natural and simple. The 1 queue has been a
workhorse of communication engineers since at least the time of Erlang (1917).
Its steady-state and transient distributions are known explicitly (see, e.g., [Mas]).
Nearly all queueing theory can be viewed as perturbations of the basic 1
model: , 1, 1, Jackson networks, etc. It is almost certain
that any quantity that is not obtainable for the 1 queue is unobtainable for
every other queue (although some questions are interesting for other queues that
are not interesting for the 1 queue).

We use this chapter to develop some of the basic ideas and tools that will be
utilized in later chapters. Some generic calculations are also carried out here, for
example, in §11.5. The ideas from §§11.4 and 11.6 are also used in later chapters,
but to a lesser extent.

The 1 queue is a jump Markov process on , with the following
jump directions and rates:

1

1 1 2 3
0 0.

11 1

That is, customers arrive at the queue according to a Poisson process with rate .
The service times are exponential with parameter . Our usual scaling (5.1) gives
us a process , which jumps 1 with rate , and jumps 1 with rate

when 0. In the parlance of queueing theory, denotes the arrival rate to
a queue, denotes the service rate, and denotes the number of customers in
the queue. In order for the queue to be stable (have a nondegenerate steady state)
we must have

1 11 2

Throughout this chapter we will assume 1, unless specifically stated other-
wise. Our process is obviously identical in distribution to . Note that
the 1 process (and hence its scaled version) is closely related to the free
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11.2. Heuristic Calculations

M M M M

M M

M M
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z t

d
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z z

z

M M

z t z t

T z z

z t z t t T
t T

M M

M M

x y
y e e x x y

x y
x x y

/ / / /
λ µ

/ /

/ /

/ /

( )

λ µ >
( . )

/ /

( ) ( ( ) (µ λ), ) , ( . )

( )/(µ λ) ( )

( )
( ) (µ λ)

( . )

/ /

# / /

#( , )

θ λ( ) µ( ) > >

< <
( . )

1 process, which was the subject of §7.3. (This is an 1 process but
without the boundary, so that .) In order to avoid excessive repetition, we
shall assume that you have mastered the ideas of §7.3.

Here is how the rest of the chapter is organized. In §11.2 we give formal deriva-
tions of most of the results of this chapter. This is in keeping with our point of
view as expounded in the Introduction to the Applications: derive first, justify
later! Most of the remainder of the chapter is concerned with justification (that
is, proofs). Sections §11.3 and §11.4 give a derivation of Kurtz’s Theorem and
a derivation of the large deviations principle for the 1 queue, respectively.
This is mostly for pedagogic purposes, since Theorems 8.47 and 8.69 establish
the principle. However, we don’t suppose that everyone who reads this chapter
will have gone through all the previous chapters, so we include a fairly simple
and straightforward approach. Once we have the large deviations principle estab-
lished, we proceed to justify the Freidlin-Wentzell theory for the 1 process.
Then, after justifying using these calculations to calculate the probability of hitting
isolated points, we finish with a new calculation: how long are the busy periods
of an 1 queue, and how large can the process get during long busy periods?

We now follow the steps for analyzing a system using large deviations as given
in the Introduction to the Applications. We already have a Markov model of the
system at hand, and have done the appropriate scaling. The next step is to calcu-
late the system’s likely behavior by calculating . We have by (5.7) or more
correctly by Exercise 8.13,

if 0
0 if 0 . 11 3

The second line in (11.3) comes from (8.11); it can be understood intuitively as
a statement that a stable 1 queue tends to stay bounded once it becomes
empty. Therefore,

max 0 0 11 4

or equivalently, with 0 and 0 0,

0 if
0 if . 11 5

That is, the scaled 1 process tends to drift to zero, and once there it stays.
The next step is to formulate some large deviations problems. The local rate

function for the 1 queue is, by (8.12) or by Theorem 11.13,

sup 1 1 for 0, or 0 & 0;

0 for 0 and 0;
for 0, or 0 and 0.

11 6
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Using the calculation in Exercise 7.24 of §7.3 we see that for 0 or 0 the
local rate function has the explicit form

log
4

2
4 11 7

Now let’s calculate the probability (in steady state) that for any
0. [Of course, an exact expression for this probability is easy to obtain since

. But let us derive this through our favorite method.]
Since zero is the unique global attracting point, it would seem that we can use the
Freidlin-Wentzell theory to calculate the escape times from and to calcu-
late for any nice set ; in particular, we should be able to calculate

for any . We simply have to calculate

inf

: 0 0 0
11 8

We have a complete solution of this variational problem in §C.3. Also, we give
an alternate discussion for one-dimensional birth-death processes in §11.5. For
a direct derivation, note that the function is independent of as long as

0. Therefore the Euler equation (C.2),

0

simplifies to

0

However, the function is strictly convex, so that the second derivative is strictly
positive. Therefore, in the region 0, any solution of Euler’s equation
must be a straight line: 0 . (This obviously follows from
Lemma 5.16). We simply have to minimize the cost of this path:

inf

inf log
4

2
4

Differentiating with respect to to obtain the minimum we obtain

log
4

2
log
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(remember that by (C.6), and use Exercise 7.24). That is, we have
found that

or put another way,

By Exercise 6.91 we can set and get

(The astute reader will note that the term is actually quite small for the
1 queue.)

Another immediate consequence of this analysis and of Theorem 6.17 is the
following estimate of escape times. Let be the first time that .

1 0 0
0 [0

lim
log

1

We can also compute transient distributions for . For example, what is
? That is, what is the probability that there are customers in the

queue after time , if the queue starts with customers? Clearly we need to
calculate

inf

for 0 (see Definitions 6.14) where

: 0

A moment’s thought will show that there are two types of paths that go from to
: paths that avoid the boundary 0, and paths that hit the boundary. For the
first type of path we know from Lemma 5.16 that the cheapest way to go from
to is in a straight line. However, for the second type of path, there are several
possibilities. We can easily see that optimal paths that touch the boundary must be
“U” shaped: a straight line segment from to zero, possibly a segment where the
path remains at zero, then a straight line segment from zero to . This is because
the first and last segments have costs identical to the cost of the free process of
§7.3, for which all optimal paths are straight line segments. Furthermore, the time
spent at zero costs nothing, while the cost of making an excursion away from zero
would have positive cost, since 1.

Now consider the lowest cost path from to that touches the boundary, where
we place no restrictions on the time the path takes. We can complete the segment
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from to zero with no cost, by following . The lowest cost path from zero to
is the solution to (11.8). We found that the path is linear, and we show in (11.22)
that the optimal slope is . Therefore, the amount of time it takes to reach
is . Hence a lowest cost path from to reaching zero in between is
given by

0
11 9

for which, by (11.23) the cost is

log

Other paths with the same -function but that take more time to go from to
are constructed by allowing the path to remain at zero once it reaches zero; by
(11.18) their cost is indeed the same. Note that the path from 0 to is exactly the
time reversal of !

Thus we have identified the paths with minimal -function that start at , pass
through zero and take at least to reach from to . Let
us denote by and by the rate and local rate functions for the free process of
§7.3. Now for , the path does not remain at zero for a positive amount of
time; it only touches zero. From (11.18) is follows for this path that

11 10

i.e., the cost is the same as for the free process. But Lemma 5.16 shows that for
the free process the lowest-cost path is the straight line from to (in fact, due
to the strict convexity of , this is optimal path). However, for the path
(11.9) (indeed, for any path that does not spend a positive amount of time on the
boundary), (11.10) holds as well. Therefore, for the straight line path is the
only optimal path.

As increases, we have for the straight line path

0

since is continuous and positive at zero. Therefore, for some we will
have

log

For every , we shall see that the lowest cost path uses the boundary. Note
that at there are two optimal paths : the straight line from to in time

, and the “U”-shaped path that follows from to zero, and follows the time
reverse of from zero to at a later time.
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Define . For the stable queue,
there is a so that the optimal cost and path from to in time are given
by

if ;

if .

if ;
if and ;
if and ;
if and .

Moreover, is the (unique) larger positive solution of

If then for any positive , and ,

Figure 11.2. Critical paths for travel from to in time for 2, 3,
1, and 2. We have sketched the paths for 2 4 8 10 14.

We summarize this result in the form of a theorem. The proof is given below
in §11.7.

1

log

0

log

The utility of this theorem is the following result, which is suggested by the
large deviations principle, but whose proof is in §11.6 and §11.7.

lim
1

log 1 2 1 2

This is the probability that hits the point , to within the resolution of the
grid. We discuss the implications of this result in §11.8.
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Figure 11.5. for the 1 queue with 2, 3, 1, 2.

This concludes our heuristic analysis of the 1 queue via large deviations.
We now begin the justifications and more detailed analysis of the system.

In this section we prove that Kurtz’s Theorem holds for the 1 queue, with
defined by any of (11.3)–(11.5). If you read Chapter 8 you can, of course,

skip this section. We prove the theorem holds by comparing the 1 process
with the free process. The free process was defined in §7.3. It is the 1
queue without a boundary. That is, it is the difference of a Poisson and an
independent Poisson process. We denote the free process by . The tran-
sition structure of is given by

1
1

11 11

It is obvious that this process satisfies the conditions of Kurtz’s Theorem and of
the large deviations theorems of Chapter 5. At any fixed , the random variable

is the difference of Poisson and Poisson random variables. In §7.3
we showed that the rate function for the free process is

log
4

2
4

We make the large deviations scaling
1

[We call the free process so as not to confuse it with the scaled 1 pro-
cess .]

Here is an outline of the argument we use:
1. The time it takes for to go from an initial point 0 to zero is about

. We obtain the rate function for deviations from this expected
time.
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There is a function , with

and

such that for any and with

the process satisfies

(µ λ) ζ
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ε
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ε
,

, ε >
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v( )
µ λ

, ( ) v( )$
v( )

. ( . )

( ) λ , µ ,

2. Until time , with very high probability. Therefore
Kurtz’s Theorem holds until this time, since it holds for .

3. sup with overwhelming probability, if 0 0.
We establish point 2 first since the proof is the shortest.

0

lim 0 lim

0

0

sup 2

. If for all [0 ], then 0 for all these .
Hence on this set is identical to the free process—a process without bound-
ary, and so Kurtz’s Theorem 5.3 applies.

We can also get useful bounds on the hitting time

inf : 0

Theorem 11.6 shows that . But we can be more precise than this.
Recall the definition (7.16) of . Fix and define as plus the expected
time to hit zero. Then is the cost of the straight line path from to zero in
time .

11 12

Figure 11.7. The function for 1 2 1.
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Prove that is convex and 0 0. Hint: in the region where
it is finite, is convex and smooth; compute second derivatives.

1 0

lim
1

log 0

lim
1

log 0

This shows that is the correct rate function for estimating the probability
that differs from its expected value by . The proof is a very straightforward
application of the large deviations principle for the free process—you might well
want to do it yourself. We include the proof since it brings up a common point: we
can estimate level crossing times by large deviations, since we can always move
small distances in small time with fairly high probability.

. We relate the behavior of to the behavior of the free process ,
which is the same as but has no boundary: for ,

for all . Clearly we can construct and so that

0

(see Definition 4.7 and subsequent discussion). Therefore, for 0, the defini-
tion of gives

: : inf : 0 0

so that, with
11 13

we have by Theorem 5.1

1
log

1
log inf : 0 0

inf 1

where the closed set referred to in Theorem 5.1 is given by

: 0 0 for some

In this case we can easily compute the optimal path. Let be the first time (af-
ter zero) that 0. By the definition (5.5) of , we need to consider only
functions that follow a slope between and , since then 0
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over this interval (remember that we are doing the computation for the free pro-
cess !). Lemma 5.16 now implies that, for such functions,

11 14

where . Since is convex and vanishes at ,
the minimum of the right-hand side of (11.14) is obtained at . The optimal
value is thus

inf

and the optimal path is a straight line with 0. This establishes the upper
bound for the case 0.

To get a lower bound, let denote the linear function with 0 and
, and continue to use as defined in (11.13). Then from Theorem 5.1

applied to the free process

inf : 0 0 sup

exp

since this set is open, and since the previous calculation shows that the value of
is . Now is continuous, so taking 0 establishes

the lower bound and concludes the proof in the case 0.
For 0,

: : inf : 0 0

Since the times between jumps have a density (exponential), 0.
Therefore

1
log

1
log

1
log inf : 0 0

inf : 0 1

where the open set is

: inf 0
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Lemma 11.11.
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Then exactly the same arguments as in the case 0 establish the desired lower
bound, except that the optimal path is not in . To obtain an upper bound note
that

: inf : 0 0 : inf : 0 0
and apply the same argument as in the case 0 to conclude that the optimal
path is a straight line, with 0.

Use the relation

: inf : 0 0 : 0

to establish the upper bound in the case 0. Use a similar argument to ob-
tain the lower bound for the case 0. Hint: apply Chernoff’s Theorem to the
random variable .

Now the question is, once becomes zero, how do we proceed in the cal-
culation? Once 0 it remains there since 0 (Chapter 8). From
the point of view of Chapter 6, zero is an irregular attracting point, so we do not
actually need boundary theory to examine the 1 process.

But we can avoid both of these advanced chapters, and argue directly that

sup

using the fabled reflection map (defined immediately below in §11.4). Let
be the free process.

sup 1

. By Kurtz’s Theorem, for each 0,

sup 11 15

Now if sup , then
inf 2

Therefore, by (11.16), the lemma is established.

We can now conclude that the most probable behavior of is to follow a
straight line ( ) until it becomes zero. After that time, by the Markov property,
we can ignore the question of how it behaved until then: the most probable be-
havior after becomes zero is to stay near zero.
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11.4. Reflection Map
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The map takes into and is continuous.
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x
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ζ , ,
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( ) ( ) ( . )

( )( )
, ,

,
( , ) < ε λ

To see that defined by (11.16) is in fact an 1 queue, couple a scaled
1 process and to have the same arrivals and departures, except if the
1 queue is empty and a departure occurs from , then changes but the

queue does not. On a sample path basis, then, by induction on arrivals and depar-
tures, we see that the queue (call it ) satisfies

event event inf

The service distribution remains exponential, due to the memoryless property of
the exponential distribution. This mapping is explained in more detail in any book
with the word “queueing” in the title, or any that mentions “reflecting Brownian
motion.”

In order to analyze the 1 queue via large deviations we obviously need a
large deviations principle for the process. This principle is established in Chapter
8. However, this strikes us as killing a fly with a sledgehammer. So we show in
this section how to establish the large deviations principle for the 1 queue
by using the contraction principle on the “free process.” The mapping we use for
this contraction is called the reflection map.

There is an obvious way to obtain an 1 process from the free process
(which was defined in §11.3): simply “delete” all transitions down whenever

the queue is empty. This can be formalized via the fabled reflection map. Assume
0 0 and define

inf 11 16

Then is a (scaled) 1 process starting with 0 0.

This construction allows us to obtain a large deviations principle for despite
the fact that the rates (11.1) are not continuous. To do that, denote by the re-
flection map. More formally, fix an interval [0 ] and consider the map, defined
in (11.16), which takes functions on [0 ] to functions on [0 ].

[0 ] [0 ]

. Since [0 ] is a topological vector space A.22, it is closed under addi-
tion, and addition is continuous. Therefore it suffices to show that the map

inf 11 17

satisfies the statements of the theorem. Now if is right continuous with left lim-
its, then it is easy to see that is also right continuous with left limits. Thus

takes [0 ] into [0 ].
To establish continuity, we use the definition of the metric on [0 ]. If

then, for some time transformation (cf. (A.2) and Theorem A.58)
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The process with satisfies a large deviations
principle with the good rate function

if is absolutely continuous;

otherwise,

if or ;
if and ;
if .

we have
sup 2

But then, for each (with the same ),

inf inf 2

so that
sup inf inf 2

Therefore, the map (and hence ) is continuous.

We now invoke the contraction principle (Theorem 2.13) to establish that
possesses exponential upper and lower bounds, and to identify the rate function.
Recall that and correspond to the free process; is given in (11.7), and as
usual is the integral of .

1 1

0 0
0 0 0

0

11 18

. Note that Lemma 11.12 establishes the continuity of the reflection map
from [0 ] to [0 ]. Thus the contraction principle (Theorem 2.13) implies
that the 1 process satisfies a large deviations principle, and the rate function

satisfies
inf :

By (11.16), if then

whenever 0 or 0

So, from the definition of and for absolutely continuous,

inf : inf [ 0] :

[ 0]
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11.5. The Exit Problem and Steady State

Exercise 11.14.

A generic calculation.

u r t
r t r t

r t t
u

z t t s

R

z t

z t
z t

V x

e e

x y y g x

g x x e

M M

x y y e e

x x x

λ µ ( )
( ) ( )

$ ( ) <

( ) ζ ( ) , ζ ( ) . ( . )
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( )
( )

( )

$( , ) θ ( , θ)

( , θ) λ ( ) ,

/ /

$ ( , ) θ λ( ) µ( ) . ( . )

λ λ( ) µ µ( )

with equality if we choose to be linear with slope whenever 0.
The measure of the set of times where 0 but 0 is zero, so that the
definition of at these points is immaterial. Finally, if 0 for some then
there is no appropriate and we obtain the representation (11.18).

To deal with a process that starts at a non-zero point, define

min 0 inf 11 19

Show that Lemma 11.12 and Theorem 11.13 hold verbatim with this new map .

We have seen that goes linearly to zero. Once it hits zero it tends to stay
nearby, as discussed in Chapter 6; basically, if it tried to wander away, it would
immediately have to follow again back down to zero. Now we discuss the
frequency and manner of the excursions of away from zero.

The derivation of the level crossing rate given in §11.2 was not completely
justified; the Euler equation is a necessary but not sufficient condition for a mini-
mal path. There is a special one-dimensional justification in Appendix C, but we
also want a more standard solution of the variational problem that can be under-
stood and applied as a standard method.

We solve the variational problem in a generic way, so that we can use the so-
lution for other one-dimensional problems (for which exact solutions may not be
available). The results of §C.3 are tailored for this case. The class of models we
cover are birth-death processes. These are one-dimensional processes for which
the jump directions are 1 and 1. Recall the Definitions (5.2)–(5.4)

sup

1

which, for the free process associated with the 1 queue takes the form
(7.16)

sup 1 1 11 20

The formula for a general birth-death process is identical, except that the rates may
depend on position, so that and . We shall often omit the
variable from the notation, but only when it does not affect the calculations.
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Consider the variational problem of (11.8) for a birth-death pro-
cess. Assume that both and are continuous in , are strictly positive in

, and that . Then

and the unique optimal path is given by the solution to

[0 ] 1

log 11 21

0 0 11 22

. The uniqueness of is established in Exercise 11.16. The explicit cal-
culation (7.17) clearly applies to this case, so that is given by (11.7), but where
and depend on . Under our assumptions on the rates we conclude that
is jointly continuous in , and continuously differentiable in . Therefore, all
the assumptions imposed in §C.3 hold. The assumption that 1
implies that, starting at each point in [0 ], the path is strictly decreasing.
This means that the variational problem indeed corresponds to an unlikely event.

We therefore conclude from Lemma C.5 that we should be looking for mono-
tone increasing solutions. From Lemmas C.6 and C.8 we conclude that there is a
solution to the variational problem, and from Lemmas C.9 that the value
can be computed via (C.12), where solves (C.11):

1 1 0

0

4
2

2
1 or

The choice 1 gives 0 so that the Definition (7.16) or (11.20) of gives
0. But 0 means (Corollary 5.12 and Exercise 5.27. This is

a generic calculation: 0 corresponds to , which is probable behavior,
not improbable). This means 0 by the assumption on , and is not the right
solution since it cannot satisfy the boundary conditions. Thus we have the explicit
formula for

or log . This establishes (11.21). Now use the fact that must be maxi-
mized by this . From the definition (11.20) of , equating the derivative to zero,

0
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Exercise 11.17.

Theorem 11.18.
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the arrival and service rates are interchanged during
the excursion from zero up to .

Consider the in steady state. Conditioned on
, over any interval of length contained in , the total num-

This establishes (11.22).

Prove that (11.22) has a unique solution. Hint:

Show that the conclusions of Theorem 11.15 hold for 1
queues. Hint: the only issue is that is not continuous at zero.

Using Exercise 11.17 and last calculation of Theorem 11.15, we see that the
1 queue has a minimal path , which is indeed monotone

and smooth, and by (C.12),

log 11 23

In this case the optimal time equals .
Our calculation of enables us to conclude that, in steady state,

exp log

Unscaling to , where is the number in the queue at time , we
have that in steady state

exp log 11 24

This is exact! That is, the error in the calculation is zero whenever is an integer.
Our solution of the variational problem provides much more information. Note,

since for 0 , that the most likely way the
queue became big is by following, over that time interval, exactly the reverse of
the most likely behavior— . More precisely, (perhaps plus ini-
tial conditions). But this is true in a more detailed way: by Theorem 7.26, during
this time interval the arrival process has rate , and the service process
has rate . That is,

The exact statement is given in the next theorem,
and is formulated in terms of the (unscaled) arrival process and departure, or
service process associated with the 1 queue.

1 0
0 0
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11.6. The Probability of Hitting a Point
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The proof is found in §7.4, Theorem 7.26. Consequences of this fact are elab-
orated in Chapter 16.

The dwell time in neighborhoods of zero follows easily from the calculation of
. Applying Theorem 6.17 we have the following:

0 0

inf

lim
1

log log

0

lim lim 0

The object of this section is to prove Theorem 11.4.

1

lim
1

log 1 2 1 2

The point of this lemma is that we estimate what the probability is of hitting a
point. Since the associated set (in the variational problem) is not open, the large
deviations lower bound is not immediate.

. The probability we are trying to estimate

1 2 1 2 11 25

is clearly positive, for every . Estimating using large deviations, the
process-level upper bound gives, for each positive as ,
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where the value of is obtained by minimizing over a closed set

inf : 0

By Lemma 6.21 and Exercise 6.25,

lim inf : 0 11 26

This establishes the upper bound for . But the lower bound does not apply
to closed sets! It gives us only

lim lim inf
1

log

where : . This is not good enough to give a bound on
, since the number of values in the process can take grows (lin-

early) with , whereas by definition the desired probability concerns exactly one
point. However, we may use a general argument to establish the desired lower
bound on this probability, which we expect to be

11 27

We give the argument for the 1 process, and then outline the extension to
the general case in Exercise 11.20.

Fix a small . Clearly, by the Markov property,

inf

where the infimum is over all points in that are of the form , where is
an integer. But the lower bound gives

where here is defined as

inf : 0 as 0

where the convergence to follows, as before, from arguments given in the proof
of Lemma 6.21 and in Exercise 6.25. Now suppose we show that there is a
such that, uniformly over ,

11 28

(whenever and have the form for integer ). Then, since is arbitrary,
the lower bound (11.27) follows.

To establish (11.28), we use a very crude (but generally useful) bound. In the
notation of Theorem 11.18, if ,

0



R

279

1
1

1

1
1

1

0 0

µε

µ
λ

µ λ

µ λ µ λ

µ λ

,

n

i

i
d

t
f

x

x y

y

f

t
f

t





( )






( )

−

! −
∗

∗

∗

∗

∗
∗

−
∗

− −
∗

−
∗

! −

11.7. Transient Behavior

Exercise 11.20.

Theorem 11.3.
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Let . For the stable queue, there
is a so that the optimal cost and path from to in time are

if ;

if .

if ;
if and ;
if and ;
if and .

Moreover, is the (unique) larger positive solution of

using the independence of the arrival and service processes. The second proba-
bility is just . For the first one, use Stirling’s formula or Chernoff’s theorem
to obtain the bound. The case is handled in the same way.

Consider a jump-Markov process where the jump-directions
have integer components. Assume that the positive cone generated by the col-
lection equals . Generalize the arguments given above. Hint: establish
that the number of jumps the process must take to go between points has an upper
bound that is linear in the distance. This establishes the equivalent of Lemma 5.20,
but for the integer case. Then calculate a probability of the process following one
particular sequence of jumps to go from one point to another.

This result was used extensively in the proof of the large deviations principle
for processes with a flat boundary (Chapter 8).

This section contains a proof of Theorem 11.3 which we restate for convenience.

1

log

0

log 11 29

The proof of Theorem 11.3 will be given below.
Recall the discussion of §11.2. In summary, we have identified the paths with

minimal -function that start at , pass through zero, and take an amount of time
at least equal to to go from to . Now for , the
path does not remain at zero for a positive amount of time; it only touches zero.
From (11.18) it follows that this path satisfies (11.10),
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Proof of Theorem 11.3

Exercise 11.21.

Exercise 11.22.
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t t x y
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t t
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x y

t
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t

y

t a t
t a t t t

x y t

x y

i.e., the cost is the same as for the free process. But Lemma 5.16 shows that for the
free process the lowest cost path is the straight line from to (in fact, due to the
strict convexity of (see Exercise 11.8), this is optimal path). However,
for such paths (11.10) holds as well. Therefore, for the straight line path is
optimal.

The same argument also establishes that for , the straight line path is op-
timal. First, any path that touches the boundary but doesn’t spend time there will
be more expensive than the straight line path by the above argument. Secondly, it
is clearly not optimal to touch the boundary, leave it, and return, since the excur-
sion from zero to zero can be deleted, thus reducing the cost. Now consider a path
that spends a time interval [ ] at zero. By the same considerations as above,
this path consists of three straight lines. Since , necessarily either the slope
of the decreasing path is more negative than , or the slope of the increasing
path is larger than (or both). The convexity of (see Exercise 11.8)
now implies that the cost is reduced by changing both slopes so that , and
the argument is complete.

As increases, we have for the straight line path

0

since is continuous from the right and positive at zero. Therefore, for some
we will have

log

For every , then, the lowest cost path uses the boundary. [Note that by
Exercise 11.8, the function is convex for 0 and is increasing for

.]
We now formalize the statements and arguments. Assume are strictly pos-

itive.
. The first claim follows from the preceding arguments,

which also establish that

log 11 30

Since is continuous, there is at least one solution to the stated equality.
But from the note above, is strictly increasing for , so that the
solution is unique.

For 2, 3, 1, and 2, calculate numerically.
How close is it to 10?

What is the form of Theorem 11.3 in the case where or (or
both) are zero?
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is the
time when steady state is reached.

Unscaling the process.

Exercise 11.23.
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We have seen that, as far as large deviations are concerned, there is a definite time
, depending on and , after which does not change; that is,

What can this mean? In fact, steady state is
never fully “reached”; initial conditions never die out completely. However, in
our scaling, they become asymptotically negligible after a fixed finite time , as

. For the purpose of intuition, consider . Starting at state zero, the
queue has busy/idle cycles. These have i.i.d. lengths. So after time , for
any 0, we should have for some 0. That
is, for any 0, in our scaling the transition from zero to zero achieves steady
state in time less than .

We have estimated for the process . What does this mean for the orig-
inal problem, the 1 queueing process ?

0 0

so we have roughly

0

We find that after time , the process virtually achieves steady state
for transitions from to . This is not exactly a standard notion of steady state.
Perhaps it is more natural to ask “How long will it take to have all transition
probabilities within of their ultimate value?” For this, we simply
have to find such that either

11 31

or
11 32

for all 0. If , then we are guaranteed that

1
log 0 as

which may not be the same as our requirement, but it’s the best we can do. If
then for all . So we are left with the question

of existence of a that satisfies either (11.31) or (11.32) for all 0.
Prove that, for any 0, there always exists a satisfying

either (11.31) or (11.32) for all 0.



ε

282

,

, ( )

1
1

1

1 1

2

2

2

1
1

1

1

( )

( ) ( )

( )

√

( ) ( )

( )

n
x y

x N y

f

f f f

f

f

f

f

f f

f f

f

Explicit asymptotics.

∞ −
−

∞
−

∗ ∗ ∗

∗
∗

∗

∗

′

′ ∗

∗

−

′

! ′′ −

Chapter 11. THE M/M/1 QUEUE

= = − −
≈ −

= − +
−

=

− =

| − | | | +

− ≈ + −

= √ −
√

= = =

− ≈ √ −
√

+ −

≈

+

√ −
√

=
≈ −

− ≈ − =

− − =

= − = − − +

p t
y x z t y t x y

p t t x
z t x t t

t x

x y I t t t

t
y x
t

y

t
y x y t t t x y

t
y x
t

t
y x
t

t
y x
t

t
y x

t

y x

y x
y x t x

y x
t

t x y

( )

< ( ) ( ) (µ λ)
( ) < (µ λ)

( ) µ λ

> (µ λ)

>

$
µ

λ
.

>

$ $ ( ) $ ( ) .

$ ( ) µ λ

$

$ ( ) θ ( )
µ

λ

µ

λ
.

$ µ λ (µ/λ)

µ

λ

( µ λ)
.

(µ λ)

$ $ (λ µ) .

$ λ µ $ (λ µ)

w $ (λ µ) ( ) (µ λ) ∆

There are simple cases when the transition probability can be estimated.
Suppose and (i.e., ). Then we know that

1 from Kurtz’s Theorem. That is, for , the transi-
tion probability looks like a delta function around . Further-
more, when the transition function is close to a delta function
around zero.

Now let’s estimate how quickly the transition function approaches steady state.
For each and , we see that constant when , where solves

log

There are a few cases where we can calculate explicit asymptotics for :
1) small relative to . Then since and is of the order of ,

0 0

By a simple calculation [see (11.7)], 0 . From (C.6) and
the definition of ,

0 0 log
1
2

log

Substituting in the above approximation we obtain

2
log

2
log

This is exact if .
2) is small relative to . In that case, . But then

0

Let us expand near . This is a minimum, so 0.

Denote and let and define
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. Then

1

1
2

2
Using the explicit expression from (7.24) of Exercise 7.24,
and the expression for from Theorem 11.3 we find

log
2

2 log

The 1 queue, like most queues, has busy periods (when 1) and
idle periods [when 0]. The idle periods are exponentially distributed with
mean 1 . What do the busy periods look like?

We investigate the probability that a busy period is longer than . Since during
a busy period the 1 process coincides with the free process, we are imme-
diately led to consider

inf : 0 0 0 0 1 11 33

Since is increasing for (or from Lemma 5.16),
we see that is minimized for 0, 0 1, which just barely misses
satisfying the boundary conditions. Also by (7.17), 0 . So
we are led to conjecture the following

1

lim
1

log 11 34

1

lim sup 0 11 35
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[The second theorem comes from noticing that 0 for all , so the maximal
excursion is .]

Prove Theorem 11.24. Hint: by the remarks above it suffices to
consider the free process. Now show that the set of interest is a continuity set.

We give two additional proofs of the lower bound for Theorem 11.24, one re-
quiring nothing more than Chernoff’s Theorem and the Ballot Theorem 3.3, the
other a straightforward process proof. We also give a simple upper bound—using
Chernoff’s Theorem directly.

. A busy period always starts with 0 1.

inf 1

inf 1 # transitions # transitions

1
1 # transition # transitions

by the Ballot Theorem 3.3. Since the “free” process is identical to on the set
where inf 1, each transition is 1 with probability , and

1 with probability . Hence

1 # transitions
2

11 36

where are i.i.d. binomial random variables with parameter .
Now Chernoff’s Theorem 1.5 and Exercise 1.17 show that

2

where
log 1 log

1
1

Also,

# transitions
!

So we obtain

inf 1

!
exp

1
2

log
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2
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2 1
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Now take and use Stirling’s formula to obtain

inf 1 11 37

The upper bound is even easier. By Chernoff’s Theorem applied to the random
variable with distribution Poisson Poisson ,

0

where 0 and is continuous. (See §7.3 for details of
this calculation.)

. For time , let no service occur: this occurs with probability .
Then Pois , and therefore

2
and 1 0

1
2

Then the probability that deviates by less than 2 from the path

for is at least , by the large deviations lower
bound. That is,

1 for 0 1
1
2

exp
2

1 1

. From the second proof of Theorem 11.24,

1 sup 11 38

But from the process upper bound,

1 inf sup

inf : 0 0 0 sup

You may verify that the path for this problem consists of a straight line from
zero to and then back down to zero. The reason that this must be the form of
any minimal cost path is that the path has to reach from zero to , and if it does
so in time then the lowest cost way of doing it is a straight line. Similarly, it is
clearly cheaper for 1 to be zero than any positive value, so the cheapest way to
go from to zero in time 1 is again by a straight line. Now we just calculate
a value of that makes minimal. Now show that the cost for this path is

where the additional term is positive.
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Finite M/M/1 queue.

Then all the calculations we have done do not change at all so long as .

Exercise 11.27.

Another important question is the effect of a boundary at a level for some
0. That is, in practice a queue has a finite capacity, and we’d like to know

how this finiteness affects the queue’s statistics. From the large deviations point
of view, this inclusion is almost a triviality. We simply put a barrier at
(equivalently at ), for example, by setting

if ;
0 if ,

if 0
0 if 0.

We still have
11 39

where log , as long as . Furthermore we have

11 40

so long as and are both smaller than , where is given by Theo-
rem 11.3 for [0 ]. We can even extend the analysis to the case
when we have a barrier at : simply consider the process , and
we see that is a stable 1 queue with a barrier at .

What happens if when there is a barrier at ? (Answer:
0 for all [0 ], but has the same expression as given in

Theorem 11.3, but with . This is because 0 as .)

The 1 queue is called, confusingly enough, an Erlang system in the older
literature. There is a voluminous literature on it and its close relatives, for both
steady state and transient analysis. For a classical approach to the 1 queue,
Takàcs [Ta1] may still be the best reference. For a modern point of view see
Massey [Mas]. For more than you ever wanted to know about it and its relatives,
see Cohen [C1]. Other books that have worthwhile discussions include [Co, Kl],
and any book with the word “queueing” in the title probably has something to say
on the subject.

Our result on the transient behavior of the 1 queue, Theorem 11.3, may
be extracted from [AKW], once the appropriate question is asked. Also, our re-
sult on long busy periods can be extended and improved using either more ad-
vanced large deviations or other methods. For example, the distribution of the
queue length (conditioned on being in a busy period that started a long time ago)
tends to a limit that is calculable. The fact that 1 queues fill by switching
their arrival rate and service rate (Theorem 11.18) can be made more precise by
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considering the time reversed process: see e.g. [SW]. This has many other impli-
cations, too, some of which are explored in later chapters (in particular, in Chapter
16).

We hope that the experienced reader has enjoyed a discussion of the 1
queue that had neither a derivation of its steady-state distribution nor a transient
analysis rooted in Laplace transforms or special functions. It’s amazing how many
ways there are of looking at the same thing, isn’t it?
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Chapter 12

Erlang’s Model

This chapter contains an analysis of the transient behavior of Erlang’s model, the
basic model of circuit-switched traffic. Consider two points (switches) connected
by wires (trunks, communication channels). Customers arrive at the system ac-
cording to a Poisson process with rate . Each customer attempts to hold one trunk
for a period of time that is exponentially distributed with mean one, and holding
times are independent. (The choice of mean one defines our time unit. The time
unit is often taken to be 3 to 5 minutes for voice calls in the United States.) If all

trunks are busy when a customer arrives, he departs forever (this model with
no retries is called “blocked calls cleared”). In the parlance of queueing theory,
the system just described is an queue: Poisson arrivals, a capacity–

queue, exponential servers. There are obviously several deficiencies in this
model. Nevertheless, we must understand it in order to have a chance of under-
standing more realistic and complex models.

Figure 12.1. The basic Erlang model.

One of the most important performance measures of the system is the
: the probability that an arriving customer finds all trunks occupied.

That is, we try to estimate . In modern systems, this is an (increas-
ingly) rare event. This probability is easy to calculate in steady-state; Erlang’s
treatment from 1917 still holds up, and anyone who has studied birth-death pro-
cesses can write down the steady state probability by inspection. However, until
quite recently [MW], the transient behavior of the blocking probability was hid-
den behind “the Laplace veil”; that is, the transform was known, but the behavior
of the function itself was obtainable only through numerical calculation. We aim
to rectify that situation in this chapter.

Once we have a handle on the transient behavior of Erlang’s basic model, we
extend the results in several ways. One natural extension is to finite population;
after all, there is usually not an infinite number of potential customers attempt-
ing to use a link, even with a substantial population of teenagers. Also, modern
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services such as Picturephone c might need more than one trunk per connection;
we are able to analyze the effect of this type of “multirate” connection in certain
cases. We hope that by the end of this chapter, the interested reader will be able
to develop his or her own model and moreover, based on our techniques, be able
to solve it.

Unlike the 1 process, in this case we have a scale parameter “built in”: it is
the number of trunks. We need to rephrase things so that we can apply the theory.
If is the number of trunks, then for the process the number of trunks
occupied at time ,

1 0
1 0

In order to get a scaling to which we can apply our theory, (5.1) suggests that we
use

1

for some positive constant . The resulting generator for is of the form (5.1):

[ 1]
1

[ 0]
1

12 1

The case is also an important regime, but we do not analyze it
here; it is better suited to analysis by diffusion techniques (see e.g., [KnM]).

Before we perform the calculations, let us discuss whether the process
satisfies a large deviations principle. There are two possible problems with the
process, namely the boundary at 0 and the boundary at 1. For the former
we have 0 0, so log is not bounded near 0. Therefore the pro-
cess does not satisfy the assumptions of either Chapter 5 or Chapter 8. Also,

has a jump at 1, but this falls within the domain of the theory of Chap-
ter 8. Nevertheless the point zero is a removable irregularity in the sense of the
Freidlin-Wentzell theory. We provide a justification of the large deviations prin-
ciple for Erlang’s model in §12.6. For now, we simply continue with our standard
program of analysis.

The main quantity we are interested in is 1 , for various values of
and . We perform the calculation for 0 in §12.2, for 1 in §12.3, and

finally in §12.5 for general [0 1].
As usual, the first item of business is to calculate . Note that Kurtz’s The-

orem 5.3 applies as long as we stay away from 1: it is established for Erlang’s
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d
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( ) #( ( ), ( )) ( ) , ( ) . ( . )

< <
# / /

model in Theorem 12.17. From (5.7) then,

0 1

min 1 0 1
12 2

so that the differential equation holds until the first time (if any) that 1.

Figure 12.2. The path for 0 75, 1, and 1 5. Note that
the last case has a corner at .

The time when reaches one starting from an empty system is therefore

1
log 1 .

This is the longest time that we can expect an Erlang system, with any initial size,
to stay away from the boundary at one. We see that there are three cases to con-
sider:

1) 1. Then as . We call this “light traffic.”
2) 1. Then 1 for some finite , and the differential equation

for breaks down thereafter. In fact, by the results of Chapter 8, after
that time is identically equal to one. We call this “heavy traffic.”

3) 1. Here 1 as . We call this “moderate traffic.”
The next item of business is to set up the question of interest, the blocking prob-

ability, as a variational problem. In Theorem 12.18 of §12.6 we establish the large
deviations principle for Erlang’s model, and in §12.6 we show that the blocking
probability satisfies

1 12 3

where is the infimum, over absolutely continuous functions:

inf : 0 1 12 4

For fixed and for 0 1, comparing (12.1) with (7.15) we see that the
calculation of agrees with that of the free 1 process of §7.3, with arrivals
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12.2. Starting with an Empty System
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rate and departure rate . Thus from (7.17),

log
4

2
4 12 5

We only need to extend the definition on the boundary to ensure that the process
stays within 0 1. The appropriate definition (established in §12.6, or
more generally in Chapter 8) is

if 0 0 or 1 0 12 5

and finally we define

1 0 0 if 1
as in 12 5 if 1 . 12 5

To compute the probability in (12.3) with 0, we need to compute the optimal
path for the variational problem (12.4), with 0. This calculation will be useful
in light, moderate, and heavy traffic. We shall first solve the variational problem
(12.4) corresponding to a model where for all 0, i.e., without the
upper boundary. Therefore, is defined through (12.5a) only. Due to (12.5b), if
this path does not cross above one before , it must be optimal for the problem
with the boundary in place. This will be the case if 1, and with a little more
arguing, we can obtain a solution for 1. The justification for these formal
calculations is given in Lemma 12.6.

Since does not depend explicitly on time we have from (C.3) along any ex-
tremal path

12 6

for some constant whose value will be determined later (the minus sign is for
convenience). By Theorem C.2,

12 7

where is extremizing at in the definitions (5.2)–(5.4). Therefore along ex-
tremal paths Theorem C.3 implies that, for some ,

12 8

Show that for this model,

log
4

2
12 9

4 12 10
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Exercise 12.4.

Exercise 12.5.

Lemma 12.6.
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If then the solution to the variational problem (12.4)–(12.5)
with boundary conditions and is given by

If and then and .

Hint: See Exercise 7.24 and hints therein.

Combining (12.8) with (12.10) we have

4

and after some algebra,

4 12 11

For 1 and any extremizing path of (12.4)–(12.5) show that
0 (for a.e. ). Derive the result also when 1. Hint: for 1 take
with 0. Make a new path by deleting this part of and

inserting a section of length at where the new path is identically
. For 1 the new path is at one, due to Equation (12.5).

If is optimal for (12.4)–(12.5) then 0 .
Hence when 0, 0 , and so 0, and 0 for all . Hint: for
the first claim, if for some 0 , then

0

has lower cost, and satisfies the boundary conditions. For the other claims use
Equations (12.8)–(12.11).

0 0 1
1 1

1 1
1

0 12 12

1 0

. Since by Exercise 12.4 any extremizing path is increasing, we can assume
that is given by (12.5a) for all , provided . The validity of the calcula-
tions (12.6)–(12.11) follows from §§C.2 and C.4. By Exercise 12.5, 0 and
satisfies Equation (12.11) with a positive sign. Since the right-hand side of Equa-
tion (12.11) is Lipschitz continuous in , this equation has a unique solution with

0 0, which is therefore the solution of the variational problem by the argu-
ment of Theorem C.1. Although we can verify that our proposed solution of the
differential equation is correct by substitution, let us develop this formula.

Equation (12.11) defines a hyperbolic sine function. To see this, consider
sinh

cosh
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Exercise 12.7.

1. Light traffic.

Lemma 12.8.
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In light traffic, i.e., , the minimal cost path from zero to one
in time is
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since cosh 1 sinh . Since is positive let

4

By Exercise 12.5, 0 0 so is strictly positive. Since

0 0 sinh and 0 0

we have
sinh

4
cosh

4
Now using the identity

sinh sinh cosh sinh cosh

we have

4
4

sinh
4

cosh

2 2
1 1

Finally use 1 to obtain (12.12).
If 1 and then it is trivial to verify that the optimal path is , with

0.

Thus we have obtained a solution of the Euler-Lagrange equations that satisfies
the boundary conditions and, moreover, established that this is the solution to the
variational problem. Let us consider each of the cases, depending on the value of

, when the system is initially empty.
is strictly decreasing in for , and bounded below if

1. If 1 then 0 for . Hint: use the patching idea of
Exercise 12.4 and the fact that 0.

Since
1 1

the event 1 is indeed rare. We have

1

1 1 1
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where is given by (12.12) to make . The optimal cost is
given by
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We see that 0, but as , the path breaks up into
two segments: the part that is very nearly , for far from , and the final
exponential rise to one near .

Figure 12.9. The path for 0 75, 2, 6, and 10.

. The first claim follows from Lemma 12.6. Next, by (12.6), and by (C.6),
Theorem C.2,

But from (12.9) and (12.11)

log
4

2

log
4

2
12 13

That is, can be expressed as a function of alone. We conclude that, since is
monotone,

The expression for follows from this and (12.13).
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We could have derived this from a simpler argument: the cost from zero to is
zero, since goes from 0 to . Then for any birth-death process with birth
rate and death rate , Theorem 11.15 shows

inf : 0 0 log

provided and are continuous and bounded away from zero. In this case
the variational problem converges to a limit (as )!

We now compute some asymptotics for the optimal cost as becomes large.
Write

1 1
1

1
1

1

12 14
As , we see that 0 and 0, and so

log
2 max

2

log

1 log

12 15

Our large deviations calculation of enables us to estimate 1
for every 0, and it also enables us to estimate the steady-state probability

1 , since by Theorem 6.89 we expect

1 exp inf exp 12 16

Now suppose that through some other means we have an estimate of the steady-
state probability; for one approach to this problem, see [Jag]. Let us call the more
accurate expression 1 , the standing for “good.” Then we can improve
our estimate of 1 by the following expedient:

1 1 12 17

and have our answer be guaranteed accurate as gets large. This equation is a bit
of a cheat, since we have no estimate on the term in

1 12 18

That is, we do not have a proof that (12.17) is more accurate at any particular val-
ues of and than (12.18). Nevertheless, it is obviously more accurate at large
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enough values of , and we have found it to be a good heuristic method for im-
proving the accuracy of large deviations approximations.

We conclude the discussion of the light-traffic case with an explicit approxima-
tion for (12.17), as becomes large. From Lemma 12.8 and (12.15) we have

log
2

2 max
12 19

We break up the integral into . Then using

1
2 2

log 1

log

log 1

1 1
2

1
8

log 1
2

and a lot of algebra, we find that when is large (so is small)

log
1

log 1

Now substituting (12.14) for , we obtain

1

Therefore,

1 1

exp 1

That is, the transient behavior follows the function , with a time shift of
log 1 . Thus, using (12.15) as our estimate for 1 ,

1 exp exp 1 log 12 20

Can you evaluate the integral 12.19 explicitly? How accurate is
our asymptotic evaluation of this integral? (See [Kn, pp. 769–770].)
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The transient analysis is quite similar here to the case of light traffic. We have

1
1 0

and so 0, since 1. The variational problem and solution are
the same as in the light traffic case, so the optimal path is

1 1 0

but
1 1

1 1

The cost is a bit different: we no longer break up the integral into ,
since already 1. We find

2 2
log

1

so , and 0. Therefore, using (12.17) we find

1 exp
2

1

exp 1

There is a noticeable difference between (12.17) and (12.18) in this case. Using
(12.18) we find

1

That is, using large deviations alone to estimate the steady-state blocking proba-
bility, we simply have to say that it does not shrink exponentially quickly in , but
we have no further information. But steady-state analysis (see, e.g., [Jag]) gives
us

1
1

In any case, we find the functional form for the approach to steady state, namely
, but this time with a time shift of log and an acceleration factor (multi-

plier of ) of 2.
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When 1, reaches one in finite time:

1 1

at log . Then for , 0 and for , 0. Therefore
we can see that the approach to steady state is nearly

a step function at :

1 1 0
1 1 . 12 21

(More discussion of this equation appears below.) We can write (12.21) in terms
of the function as follows:

1 1

We can be a little more accurate than this using some calculation. Since 1
we have 0 so that, using a direct approximation for small and ,

log
2

2

log 1
2

1

log
1

Now is small when is near . Specifically, if ,

1 1
1

1
1

1

(using 1 ), so, for , ,

1 1

1 1

That is, the “step function” looks like a Gaussian with width of order 1 .
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12.3. Starting with a Full System in Light Traffic
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We saw in the last section that when 1 and 0 1, the system instantly
achieves steady state, at least as far as 1 is concerned. Large devia-
tions is also too crude to give any detail about 1 when 1; diffu-
sion approximations are more appropriate there (see, e.g., [Kn, Har]). So in this
section we concentrate exclusively on 1. We carry out formal calculations
first, relying on heuristics and guesses, and obtain explicit results. The justifica-
tion for these steps is given in Theorem 12.13.

To begin, by Theorem 12.17 we have

1 12 22

so having 1 is indeed a rare event. By Theorem 12.18 we have

1

inf : 0 1 1

with as defined in (12.5). The variational problem is almost the same as
before, but we no longer have a monotone function , since 0 1.
We have, as in the previous section,

12 23

for some constant , where we have chosen to put (compare to Equation
(12.6)) as we anticipate the right-hand side of Equation (12.23) being positive.
As in (12.7)–(12.11) we obtain

4 12 24

This is the equation of a hyperbolic cosine:
cosh

sinh
12 25

where the sign is determined by the parameters. Now the function cosh is convex
and symmetric around zero. To keep the path below one we need to start down at

0, and return to one at . This dictates 0 and 0. So let

4 12 26

Then setting 0 1 gives
cosh 1

cosh
1
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( )
( )

γ

γ
. ( . )

( )/

γ γ ( γ γ ) ( γ ) , ( . )

( )
< γ

( γ )
/ γ

( ) γ .

( ) #( , )
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θ θ .

( . )

θ < θ

r t s t B
x x

B
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K
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s B t C A t

r t t t t

I

I r r r dt

r
r

dt K t
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r

The condition 1 and the symmetry of cosh make 2 . Then using
2 cosh cosh 2 1,

cosh cosh
2

cosh 1
2

1 1
4

12 27

With 1 cosh 2, we obtain a quadratic equation for , with solution

1 2 1 2 1 12 28

where the sign is chosen since the left-hand side is positive so that necessarily
1 .

We see that is a decreasing function, converges to zero as and that
1 for small . The minimum of the curve, achieved at

2, is , and it converges to as .

Figure 12.11. The path for 0 75, 2, 6, and 10.

The value of the -function must be computed carefully. Using (12.23) and
breaking the path into monotone parts,

12 29

Here is obtained from (12.9) by taking 0 in (12.24), and by taking
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Exercise 12.12.

Theorem 12.13.
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#Consider the variational problem of obtaining , where is
given in (12.5a)–(12.5c). Then the unique optimal path is given by Equations
(12.25)–(12.28), and is given by (12.29)–(12.30).

0. By (12.9) we have

log
4

2

log
4 4 4

2

log
4

2
12 30

since 2 4 0. To summarize,
for given 0, we find by (12.28), then calculate and from (12.26).
We have cosh 2 , and given by (12.29). Note that the
minimum value of , , decreases as increases, and that for large ,
nearly decomposes into near 0, and the time reversal of that near .

Show that 1 as 0 and, as ,

1
1

1
2

Hints: you don’t need to do any calculation for this as soon as you realize that
is very nearly one for all [0 ] when is small. Find an expression for

as a function of for large from (12.28). Then plug into (12.29) in a manner
similar to the calculations appearing below (12.19). You may need the approxi-
mation

2 1
1

12 31

Don’t forget that log 1 1 2 !

There are two unrelated items that need justification in this (and any application)
chapter.

1) The probability in question [here 1 ] is approximable by the so-
lution to a variational problem.

2) Our calculations produced the solution to the variational problem.
We provide the justification of 1) in §12.6. This section contains a proof of the

following theorem, which justifies 2):

To prove this theorem we must show that
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1) Solutions of the variational problem satisfy the differential equation (12.23).
2) Our stated solution of the differential equation is the correct (minimal) solu-

tion of the variational problem.
Our approach to the last point is to show that the solutions to the differential

equation (12.23) are of a very limited variety, and to examine each possible solu-
tion. Let’s get to it.

The main new idea is to examine the problem by removing the upper boundary
(at 1). That is, we consider a modified process that has arrival rate for
all positive , and has service rate for all positive . (We actually modify the
service rate so that it is bounded for 2, but this is just another technicality.)
We show that our solution is minimal for the modified process. Therefore it must
be optimal for the actual process . The advantage of the modified process is
that our theorems of Appendix C are specifically tailored for processes without
boundaries, so we modify the process in order to prove that the solution to the
variational problem must satisfy certain differential equations.

To show that optimal paths for the modified process are given by our solution
to (12.23), we first show that every optimal path from one to one in time never
reaches the level 2 . This is because, by the argument of Theorem 11.15, the
cheapest path from 1 to 2 has cost

log log 12 32

(The inequality is obvious since the two integrals are over the same distance, but
the second integrand is pointwise smaller than the first.) Now the cost of an op-
timal path from one to one in time is smaller than the cost of the cheapest path
from to one in time , since an optimal path must lie above (going lower
would cost something, but would have no benefit, since the path must eventually
cross back above to reach level one by time ). But for all 0
when 0 1. Also, by Theorem 11.15, the cheapest path from to one has
cost log . Thus we have shown that for the modified process, all cheapest
paths from one to one over a time lie below the level 2 .

Now Theorems C.13 and C.18 apply to the modified process, since this process
has smooth bounded jump rates. These theorems state that the DuBois-Reymond
condition holds; that is, that the differential equation (12.23) holds over every
interval where the optimum satisfies 0, and furthermore that

is continuous. By the calculations following (12.23), each segment of
must be a hyperbolic cosine, hyperbolic sine, or interval where 0. The

segments can be pieced together only at points where 0. It is thus clear that
any path from one to one cannot have any segments composed of hyperbolic si-
nusoids, since these paths are monotone and never have 0. This means that

must be positive. Similarly, segments of hyperbolic cosines must have their
axis of symmetry between zero and , or else these too would be monotone and
would not have 0 at any intermediate point. Thus we have reduced our con-
siderations to hyperbolic cosines that have an axis of symmetry in 0 and to
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straight line segments where 0. We eliminate hyperbolic cosines that lie
above the level 1 by showing that any locally optimal path above 1 ac-
tually costs more than the path 1. Then we show that optimal paths cannot
have any straight line segments. The idea here is pretty obvious: Euler’s equation
shows that straight lines are not optimal, so we just compare the straight line to a
nearby curve that is more like the hyperbolic cosine. Now we continue with the
statements and proofs outlined here.

0 0

. We show that the hyperbolic cosine that starts at one and curves
downward ( 0 0, 0) is more costly than the straight line path 1,
0 . First note that, since is monotone in for every (see Ap-
pendix C),

Now the straight line path has cost 1 . The hyperbolic cosine path
has [by (12.28), noting that we must have the positive sign on the square root]

1 . Therefore

1

0

. There are three cases to consider: 1, 1, and 1. The first case
costs more than the second for any time interval. Therefore it cannot be worth-
while to hold at any level above one, since it would have been cheaper to spend
the time holding at one. We analyze the second and third cases together. First note
that every candidate optimal path remains above , so we really only have to con-
sider 1. Now consider the problem of the cheapest cost path from to
in time , where 1. We show that is not optimal by showing that
changing the path in the direction of the hyperbolic cosine path results in lower
cost. That is, the straight line does not satisfy the Euler equations, and we make
a variation in a direction we suspect will have a lower cost, and lo and behold, it
does:

[ ]

0 0

0

0
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12.5. Erlang’s Model: General Starting Point
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since 0 for 0 and . Therefore optimal paths do not hold
at any level above .

This concludes our proof of the validity of our solution of the variational prob-
lem for paths that go from one to one in time .

Suppose now that 0 0 1 and we are given a 0 with the task
of estimating 1 . The thing to notice is that if, for some previously
chosen with its associated path , we have

1

and is the unique minimizer of the problem on [0 ], then

12 33

is the (unique) optimal path for the problem of minimizing over paths that start
at and reach one in time . This is a special application of the general principle
of optimality: solve one variational problem, then see if any part of your extremal
fits another problem. See Theorem C.12.

Figure 12.14. A minimal path from zero to one, with the bold portion the
minimal path from to one in time . Here 0 5, 0 75, and 10,
implying that 1 0979 and so 8 9021.

For Erlang’s model we are fortunate enough to have a complete solution at
hand: the extremals from 0 and 1 cover the rest. Let’s see how.

1) 1.
The longest time extremal path here is ;

1 0 log
1
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so for given 0 1 , at log . Therefore, given 0 1 ,
we will be able to find an extremal that goes from to one in time for any
log log log .

We have
1 1

1 1
1

Now can be solved for , and then we have to find such that

12 34

As shrinks to zero, increases, and the interval between when and
1 shrinks monotonically to zero. This implies that there is a unique

solving (12.34). Given , we find .

2) 1.
Again the set of extremals from the initial condition 0 covers the rest of

the cases. We may choose any 0 , and find that for each 0 1 , the
time is monotone increasing in . We have for each 0 1 ,

lim 0 lim

Therefore there is a unique extremal of the form

1 1 12 35

1
12 36

that goes from (at time ) to one (at time ) with . For this path,
, with given by (12.9).

3) 1.
This is the most interesting situation. There are several cases, with a bifurcation

of the solution!
A. .

Here the extremals from 0 0 cover the cases. The calculations are the
same as the previous two cases.

B. .
1. log .

Here again the extremals from 0 0 cover the cases. The break point
log is obtained by setting with 0 1. This is the

longest time an upcrossing from to one can take with 0 0, since the limiting
case of for the problem of crossing from zero to one in time gives a path
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that decouples into a rise from zero to along , then a final rise near
that is the time-reversal of with starting at one.

2. log .
Here the extremals from 0 1 cover all the cases. There is only one thing

to notice. Let refer to that path that achieves its minimum at (i.e., in the no-
tation of Section 12.3, for this path). If 2, then we use a strictly
increasing path. If 2, we use a path that first decreases, then increases. See
Figure 12.15 below for the various types of paths. The interested student might
wish to find explicit expressions for as a function of , and formal expressions
for as a function of this .

Figure 12.15. for 0 75, 0 85. 1 5877, the bifur-
cation value. and are 1 0213 and 3 1541, respectively, for the curve

4 1754.

Figure 12.16. for 0 75, 0 85. 0 5279 for 3. and
are 0.9155 and 0.91655 for the curves starting at zero and one respectively.

These two curves have 10; in the limit their final portions agree
with each other and with , with 0 91629 log .
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12.6. Large Deviations Theory

Kurtz’s Theorem.

Theorem 12.17.

Proof

Given any , , and , there are numbers
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In this section we show that both Kurtz’s Theorem 5.3 and the large deviations
principle apply to Erlang’s model, and we identify the rate function. The reason
we have to work at this is that the assumptions of Chapter 5 are not satisfied by our
model at the points zero (where 0) and one (where is discontin-
uous). Both theorems are justified by using very similar methods. We construct
processes for which the theorems are known to hold, and use them to prove the the-
orems for Erlang’s model by approximation arguments. The discontinuity at one
can be treated via the methods of Chapter 8, and there are fairly general methods
that can handle some discontinuities of this type. However, no general methods
exist to deal with rates that go to zero, and we work hard to verify the results, using
methods that are specific to this model.

Define through (12.2) with 0 .

0 0 [0 1]
0 0

sup

. Kurtz’s Theorem 5.3 applies for 0 1, as long as is not close to
one. Clearly when 1 the process never hits one if 0 1. This
means the only cases not covered by Theorem 5.3 are when 1 or 1. In
fact, we can always break the path into two parts, one away from one, and one
near that boundary, and prove the result separately for the two parts. Therefore,
we simply have to determine what happens when 1. This is very simple to
calculate: for 1 we compare with an 1 process, and for 1 we
compare with a free process.

For 1 we compare the process 1 to an 1 queue with arrival
rate one and service rate ; we call a scaled version of this process . Using
coupling we clearly have

1 12 37

since 1 has arrival rate 1 and has service rate . Now we use
the 1 version of Kurtz’s Theorem, 11.6, to conclude that

sup 12 38

This immediately implies that

inf 1 12 39
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The large deviations principle.

Theorem 12.18.
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Fix and define through Equations (12.5) and (5.5).
Then is a good rate function. For any open set of paths , and
any closed set of paths , and any we have

Furthermore, uniformly over we have

For 1 we can use similar coupling arguments to show that the process must
leave a neighborhood of 1 quickly and very near ; the details are left to
the reader. This completes the proof of Kurtz’s Theorem.

While the statement and proof of the large deviations principle apply only to the
basic Erlang’s model of §12.1, you will be able to use the idea to prove the prin-
ciple for other models developed in later sections and later chapters.

0
[0 ]

[0 ] [0 1]

lim sup
1

log inf : 0

[0 1]

lim inf
1

log inf : 0

. Let denote the rate function defined through Equation (12.5a), with

1 for 1. Then

: : : sup 1

Thefirst set on the right is compact by Proposition 5.46, while the second is closed.
Therefore the intersection is a compact set, so that has compact level sets. In
particular, the level sets are closed, so that is lower semicontinuous. So, it is a
good rate function.

The upper and lower bounds are established in Chapter 8 for sets of paths that
stay away from 0. To prove the upper bound for sets that include 0,
consider a modified process defined by the following jump directions and
rates:

1 1;
0 1.

1
;

0 ;
0 0.

12 40

We construct a coupling between the processes and as follows. Sup-
pose is defined as before. We also define an independent Poisson process

with rate . Now [as well as ] is defined to start at , and to have
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the same jumps as . We then modify as follows. If makes a jump at
time , and if is below , then with probability , we induce a jump
down. This makes the jump rates of as specified in (12.40). From the time of
the first jump of , the processes are no longer coupled, and we can construct

any way we like (this part of the construction doesn’t figure into the bound
we use).

The process has the following properties. It is a jump Markov process
for which the log rates are bounded and Lipschitz continuous in 0 1 , and so the
theory of Chapter 8 applies. The process agrees pathwise with at least
until the first time that makes the first jump. Therefore, for any [0 1]
we have (with probability one)

0 0

since the event that makes no jumps in [0 ] is independent of 0
, and its probability is at least . This immediately implies that for

any set of paths ,
12 41

Therefore, we have the following upper bound, for each :

lim sup
1

log inf : 0 12 42

where is the rate function for , defined in the usual way through the local
rate function . That is, the large deviations upper bound for provides a
large deviations upper bound for . To see that (12.42) gives the correct upper
bound, we need to show that

lim sup inf : 0 inf : 0

12 43
We show that (12.43) is correct by constructing a sequence of functions

that have a limit as 0, and also have

lim sup inf : 0 lim sup

inf : 0

Since is a good rate function, there are that achieve the infimum in (12.42)
at each . We construct the functions from any such sequence , as follows.
We want for all . First we modify near the endpoints ( 0 and

) to obtain the intermediate function . If then let 0 and let
go down with slope until it intersects . Similarly, if then set

and let go up linearly from to with slope .
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To obtain an upper bound on the error due to this modification, we use the rep-
resentation (5.20)–(5.22) of , established in Theorem 5.26. For the initial seg-
ment, where , choose and 0 to obtain

log 0

for all . For the final segment, where , choose 0 and
to obtain

0 log log

for all . Since each modification is on an interval of length at most , we
have

2 log

so that for all small the error is bounded by log , for some , and
clearly goes to zero as 0.

Finally, define max . Since is associated with a constant
coefficient process for 0 , any segment of that starts at , goes
down, and then crosses back up to , has a higher cost than the straight line path
that remains at . Therefore

By Exercise 12.21, are uniformly absolutely continuous, and hence so are
and moreover, 0 max . Therefore there is a converging subse-

quence of the , with limit , and 0 . Note that since by construc-
tion, sup and which is closed. Since
for all we have and we finally conclude that

lim sup lim sup lim sup 12 44

On the other hand, by the lower semicontinuity of , Lemma 5.42, and since
and 0 ,

lim sup inf : 0 12 45

and (12.43) is established, and with it the upper bound.
To establish the lower bound it suffices to show that for each (absolutely con-

tinuous) path with 0 ,

sup exp 12 46
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where 0 as 0. Assume 0 0: the case 0 0 is left to
Exercise 12.22. Fix and let

max 2 12 47

With the process constructed as for the upper bound,

sup 3

sup 3 inf

sup 3 inf

sup

exp

where the last inequality follows from the lower bound applied to the process .
Therefore the lower bound will follow once we establish that

lim

In Exercises 12.19 and 12.20 we show that for all ,

0 if 0
if 0,

where 0 as 0. Therefore

12 48

On the other hand, as in the proof of the upper bound, we can modify near zero
and , to obtain functions with

0 max 0 and max

and agrees with on [ ] with a change in the cost by at most
. But below the functional corresponds to a constant coefficient process.

Therefore optimal paths, and in particular paths from to , are straight lines. This
implies that

This together with (12.48) establishes the lower bound.
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# ( , ) < #( , )

∂#/∂ θ

#( , )

# ( , ) < #( , ) (ε) (ε)
ε #( , )

γ ε

( ) ( ) (ε) ( ).

( )
( ε/γ ) ε

Exercise 12.19.

Exercise 12.20.

Exercise 12.21.

Exercise 12.22.

Exercise 12.23.

Non-Poisson arrivals.

If 0 then . Hint: compute both at 0.
Now use

and the explicit expression (12.5a) for .

If 0 then where 0 as
0. Hint: use the explicit expression (12.5a) for , derive a relation

when 4 and a different relation when it is positive but smaller.

Show that , defined in the proof of the upper bound, Theo-
rem 12.18, are uniformly absolutely continuous. Hint: use the definition of and
the preceding exercises to obtain a uniform bound through

Now use the proof of Theorem 5.18.

Complete the case 0 0 in Theorem 12.18. Hint: use
Kurtz’s Theorem 5.3 to show that with high probability, 2 , and ap-
proximate to keep them close.

The last piece of justification concerns the probability of hitting a point. The
large deviations bounds concern closed and open sets respectively. However, we
are interested in the probability of hitting a point—which corresponds to a closed
set. To obtain the probability as a solution to a variational problem we have to
show that the lower bound holds for this set. This was, however, discussed in
§11.6. Since the arguments are identical, we make this into an

Establish Equation (12.3).

In this section we describe extensions of various sorts to Erlang’s basic model.
These extensions are in various stages of completion. The point is not to provide
answers, but to show how to use what we’ve learned in more complex settings,
and to show how the large deviations point of view may be used.

There are several reasons why the arrival process to a trunk group might not be
Poisson. We quickly examine some of them.
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1. Finite population.

Exercise 12.24.
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Suppose that there are potential customers who might use a line. To avoid
trivialities, we assume that 1, so the number of trunks used
0. Each customer waits an independent, exponentially distributed amount of time
with mean , then attempts to use a line. If successful, the customer holds the
line for an independent exponentially distributed amount of time with mean one.
If unsuccessful, the customer simply becomes idle again.

Now let
1

number of trunks occupied at time 12 49

We have
1 0 1

1

that is, if trunks are being held, the rate at which they are released is , and
the rate of demand for trunks is (available population) (rate/person), or

.
Now that we have specified our model, our analysis can go through almost ex-

actly as before. The fluid limit is

1 1

1
1

0
12 50

The three cases are then the following:

1
1 heavy traffic,

1
1 moderate traffic,

1
1 light traffic.

The analysis goes through exactly as in the basic Erlang model from here. The
details are left to the reader.

Show that if 0 0, then for the finite population model we
have

sinh 12 51

and if 0 1 and traffic is light, then

cosh 12 52
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where , , and are constants. Find an expression for as in the basic
Erlang model. Show that, in light traffic,

lim
1

log 1 log

Batch arrivals are relatively easy to analyze. Suppose that customers arrive in
“waves” or “clumps.” We can model this by having the number entering the sys-
tem at once be with probability , for 1 . Services are still single;
that is, an arrival is a cluster of calls that depart the system independently. Then
a one-dimensional model suffices to analyze the system. As before we let
be the number of trunks occupied at time , and the transition rates and directions
become

1 0
1

We set 0 when since we don’t want any batches to arrive
that would force the system to have more than customers. There are other ways
to model this requirement, such as having whenever

; this would mean that as much of a batch as possible is admitted,
so the whole batch isn’t blocked when there is room for any part of it. Which
model is better depends on the particulars of a system, and cannot be decided on
purely mathematical grounds. They are equally easy to analyze. In fact, they are
indistinguishable once we make our usual scaling of jump rates and space:

1 0 1

in both cases except for a neighborhood of size of 1. Note that this is a
model with a “thick flat boundary.” It fall under the domain of the theo-
rems of Chapter 8. However, light traffic can be analyzed using the familiar “small
movement over small time periods takes small cost” result (cf. Lemma 6.21).

We are interested in the probability of blocking. To begin our analysis, we cal-
culate the drift:

0 1 12 53

If we set , then we see that has the same equation (12.2) as
before, with replacing . Therefore we can immediately define light, moderate,
and heavy traffic as having be less than one, equal to one, or greater than one,
respectively. Furthermore we can define exactly as before, and have our tran-
sient behavior qualitatively depend on whether or not is greater than , in which
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Exercise 12.25.

3. Multirate service.
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case steady-state will have been reached already, or if is less than we know we
are still in the transient regime.

The local rate function is defined by an algebraic equation that cannot, in gen-
eral, be solved analytically. Specifically,

sup 12 54

and by setting and taking derivatives, we obtain an 1 degree equa-
tion in , which is not usually solvable when 3. However, it is not hard to
show that there is a unique solution with 1, that has the convexity
and continuity we have come to expect, and indeed the qualitative behavior of the
solutions is exactly the same as in Erlang’s basic model. For more caveats on this
model, see the next section.

For 4 and 0 4 1, calculate the value of
that gives moderate traffic for the batch arrival model. Find an expression for

the steady-state blocking probability in light traffic. Numerically evaluate the rate
function that governs the steady-state blocking probability for 1 5. (We
obtain 0 00912.)

Suppose that there are two classes of customers in our system. One class requires
one trunk per customer; the other requires trunks per customer. This models,
for example, advanced services such as low bitrate video or moderate capacity
data channels. We suppose that the “fat” customers have arrival rate and ser-
vice rate , while the normal customers have arrival rate and service rate one.

Each class has a different blocking probability; the fat customers are blocked
whenever there are fewer than trunks available, while the normal customers
are blocked only when no trunks are available. What is the transient response of
this system?

We let number of normal number of fat present in the sys-
tem at time . Then

1 0 if 1
0 if 1

1 0 1 if 0
0 if 0

0 1 if 1
0 if 1

0 1 1 if 0
0 if 0 .

We see that our scaling cannot distinguish between normal and fat customers
for the purpose of blocking analysis. Because of this, the model is inadequate for
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Exercise 12.26.

Exercise 12.27.

Exercise 12.28.
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the representation of moderate or heavy traffic or for analyzing long-term over-
loads (we discuss this in more detail below). However, for light traffic, the calcu-
lation follows from the basic model’s analysis in a very straightforward fashion,
as outlined for the following exercises.

We begin with a derivation of .
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whenever is away from the boundary; that is, when

0
0
0

Notice that as long as is away from a boundary, the two components of
decouple. We use this observation to solve not only for , but for

and as well. We are now in position to say what “light,” “medium,” and
“heavy” traffic means for our multirate model. We say that the system is in light
traffic if the point where 0 is strictly in the interior of the region

1 0 0 12 56

Find as a function of , , and .

Find the - and -functions for the multirate model as explicitly
as you can.

In light traffic, write an estimate for the probability of blocking
(overflow) as the solution of a variational problem.

Solve the variational problem of the previous exercise. You can
do this easily once you note that the two components of decouple. The
only possible complication is finding the point where hits the boundary

1. Find the (unique) path from to this boundary by minimizing
the cost ( function) over all extremals that hit this boundary. That is, find

inf : 0 1

: 0 1
12 57

Show that the optimal value of lies between and 1 and satisfies

1 0

How does the frequency of buffer overflow behave as a function
of ? Could you have predicted this functional form heuristically from the so-
lution to the plain Erlang model? You will notice that the definition of “blocking
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12.8. Transient Behavior of Trunk Reservation

We won’t prove the existence of this bistability here, but for plausibility consider
the following argument. Suppose that the network is heavily loaded, and that
nearly every call is a via. Let the fraction of links that are not full be 1. When
a new call arrives, it has a probability of being routed directly (we assume that if
the direct link is available it will be used). With a high probability (1 ) the call
will need to use a via, if it is accepted at all. If there are nodes in the network
then (assuming that the links are statistically independent) the probability that at

as a function of ” needs to be done carefully; simply increasing will also in-
crease the steady-state load on the system. To make a fair comparison, we must
scale by 1 . This gives us a measure of the cost of burstiness, or equiv-
alently the cost of largeness (distance from a fluid limit). Recall from Chernoff’s
theorem that probabilities should increase geometrically as a function of the chunk
size; is this what you found?

In the AT&T circuit-switched (voice) network (and in others, for all we know)
there are two classes of calls: , and . Between nearly every pair of the
140 or so (as of 1994) main switches there is a direct connection; that is, the graph
of connections is nearly complete. When a call from, say, Cleveland to Buffalo is
being set up, the network attempts to place the call on the direct link between the
two cities (assuming that there is just one switch serving each city). However, if
this link is full, then there are 138 vias to choose from: Cleveland to Rochester
to Buffalo, Cleveland to Newark to Buffalo, etc. We shall not describe the algo-
rithm by which the via is chosen; the interested reader can examine the volumi-
nous and growing literature on the subject of good algorithms (DNHR, ALBA,
DAR, RTNR).

Figure 12.31. Calls between and may be carried on the direct link (dark
line), or on a via such as (dashed line).

There is a problem with many algorithms for choosing vias. Each via call takes
two links, so potentially reduces the carrying capacity of the network. In fact, just
as in Aloha (see Chapter 14), there are often two operating points for the system:
one where most traffic is carried on vias, and one where most traffic is direct.
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least one via is available is

1 1
2 for 1

1 for 1
1 for 1 .

So we see that if a call is blocked only when there is no via available, the probability
that an arriving call will be carried on a via can be close to one (that is, about equal
to ) if is large and is small but 1 . In this situation the total carried
traffic is only about half the network capacity; the network would actually perform
better (have lower blocking and higher throughput) if no vias were allowed.

In order to prevent this problem (and for other benefits as well), network de-
signers incorporate a scheme called into most effective routing
strategies. Trunk reservation allows a via to use a link only if there are at least

trunks free on the link at the time of call setup. Direct calls are carried if there
are any free trunks. The parameter is adjusted to make the various blocking
probabilities conform to the designer’s goals. Empirically, any positive value of

seems to keep a network free of bistability under any reasonable routing strat-
egy.

We now present and analyze a horrendously simplified model of trunk reserva-
tion. We consider a single link of capacity . We suppose that there is a Poisson
arrival process of direct calls with parameter , a trunk reservation parameter

, and we model the requests (from the rest of the network) for use of the link
as a via as a Poisson arrival process with rate . Each accepted call holds the
link for an i.i.d. time distributed exponentially with rate . Then the number of
calls carried on the link is a Markov process with the following structure:

Figure 12.32. Birth-death structure of trunk reservation.

Taking (number of calls in progress at ), we have

1
for 0 1
for 1 1

0 for 1
1

This process does not have Lipschitz continuous rates, so our theory does not ap-
ply. Yet we could modify the rate quite easily to obtain a Lipschitz contin-
uous model by linear interpolation, viz.

for 0 1
for 1 1
for 1 1

0 for 1 .
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In some ways this model might be as realistic as the previous one: decisions are
often based on stale information, so calls may be blocked or accepted when they
shouldn’t be.

Figure 12.33. The arrival rate for both an upper bounding model and a
lower bounding model. Note that the drifts and rate functions of these models
are identical except in an neighborhood of 1 .

We can analyze either an upper bounding or a lower bounding model via Kurtz’s
Theorem and via large deviations. The results will have an in the calculations.
It is clear that we may take 0 even before doing the calculations, though,
and just be cognizant of the fact that statements about what is happening near the
point 1 might be off. Note that this singularity can be handled rigorously
using results in [DE2].

There are no further theoretical difficulties in analyzing this model. There are at
least two quantities of interest: the probability that 1, and the probability
that 1 . We follow our usual procedure in estimating these quantities.

The first item of business is to examine . We plot the possible character-
istics of the flow in Figure 12.34. We see that there are four main cases, and three
critical cases. Case 1 has light traffic from the point of view of both the direct traf-
fic and the via traffic. Case 2 has light direct traffic, but critical via traffic. Case
3 has heavy via traffic but light direct traffic. And Case 4 has heavy traffic for
both types. There are three transitional cases also: where via traffic is barely crit-
ical and direct traffic is light (between Cases 1 and 2), where via traffic is barely
heavy and direct traffic is light (between Cases 2 and 3), and where via traffic is
heavy and where direct traffic is critical (between Cases 3 and 4).

We examine only case 2 in detail; the others are, if anything, easier to analyze,
and are left for the interested student. Our approach is the following. We eval-
uate the solution of the variational problem for the case 0. It is not hard to
see that the variational problem for any 0 has solutions that are close to the
solution for our case. Furthermore, is close for the two cases. There is no need
to prove the large deviations principle for the case 0; by comparison with an
upper bounding model and a lower bounding model as in Figure 12.33, the prin-
ciple holds well enough to enable us to calculate the quantities of interest for this
problem.
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Figure 12.34. Possible patterns of drift using trunk reservation.

Consider the problem of estimating the blocking of direct traffic:

1 exp 12 59

inf : 0 1 12 60

For each [0 1], the path with 0 reaches 1 in finite time
; that is, there is a bounded function with

1 for all [0 0
1 for all 0

Furthermore, the minimal cost path from 1 to 1 is the time reversal of ,
so that it also takes finite time. Therefore, for each 1 and 1 ,

is a constant equal to

inf : 0 1 1

log

log 1 log 1 log 1

12 61

This is because the minimal cost path (over all time) from to 1 is ,
with cost zero; the cost of remaining at 1 is zero; and the minimal cost path
(over all time) from 1 to one has cost .

For 1 we perform an analysis reminiscent of the 1 queue. There
is a time below which a direct path from to one (which stays above the level
1 ) has the lowest cost, and above which the cost is . Here is an outline of
the calculation. To compute the cost of a direct path, we pretend that there is no
change of arrival rate at 1 . The problem is reduced to the transient behavior
of the plain Erlang model, starting at a point . We know that, for small time, the
critical path is strictly increasing, and that as time goes on the path will initially
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Exercise 12.35.

Exercise 12.36.

Exercise 12.37.

dip before climbing to height one. The cost, as a function of time, is unimodal,
starting at infinity at time zero, going to a minimum, and gradually climbing back
to the steady-state value model . Clearly we have model , since the
behavior of the two systems is identical until a path hits the level 1 , and then
it is easier for the present system to reach the level 1 afterwards. Hence there is a
unique time when model . At this time there are two paths with
the same cost: the direct path, and the path that reaches the level 1 , remains
there for a while, and then climbs back up to one. The only possible question is
whether the direct path would have reached level 1 before , leading to an
inconsistency.

Why can’t the direct path touch level 1 before without
having higher cost than the other extremal path?

Analyze cases 1, 3, and 4. You only need to use the solution of
Erlang’s model for and arrival rates. Find the optimal paths and
the behavior of the cost function . Is there a finite time in these models?
Why or why not? In the cases when there is no finite time , show that there is a
discontinuity in the derivative of as a function of , and analyze the behavior
of that causes it.

There are better models for the behavior of a link under various routing poli-
cies utilizing trunk reservation. For example, the rate with which the link is used
as a via might depend on the state of the link. This comes about in “Least Busy
Alternative” routing, where vias are chosen not at random, but by selecting the
least busy among the 2 possible vias. Least busy could mean several things;
a typical measure is to have the busyness measured by the most heavily loaded
of the two links on a via, and load is measured in terms of free trunks below the
reservation level 1 .

The rate at which vias attempt to use a given link should be a monotone de-
creasing function of the link occupancy. In “fixed point” steady state calculations,
the function is calculated numerically [MGH]. To make a more realistic transient
analysis, one might assume that these rates hold in our model, too. We would then
use them to calculate the transient behavior of the scheme. The only difference
between that calculation and the one from the previous section is that is now

. The explicit solution of Erlang’s model is not available, but quantitative,
numerical, and qualitative results are derivable.

Suppose that 1 . Examine the approach
to steady-state of the quantity 1 .

The other quantity of interest is 1 . This quantity is a bit more
delicate because of the same reason we don’t necessarily have a large deviations
principle for the process. Are vias allowed in when 1 or not? The
question is whether the arrival rate is right- or left-continuous at the point 1 .
For this reason the calculation of the quantity in Case 2 is a bit problematic. The
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other cases reduce directly to simple Erlang model calculations, and are left to the
reader.

Show that in Case 1,

lim
1

log 1 log

Why does the Freidlin-Wentzell theory apply to this case?

Like the 1 queue, Erlang’s model has a voluminous literature. We cannot
possibly do justice to other authors, so we content ourselves with a very brief dis-
cussion of some papers that are directly applicable to the types of results we ob-
tained.

The steady-state solution of Erlang’s model is a truncated Poisson distribution
with parameter . Therefore Chernoff’s Theorem may be used to derive asymp-
totic expansions of the blocking probability when 1 or 1. The central
limit theorem may be used when 1. It is also straightforward to derive ex-
pansions based purely on analytic expressions. See [Jag] for details.

The Laplace transforms of 1 and 1 were derived
by Takàcs [Ta1] and Beneš [Be]. These were inverted asymptotically in Mitra
and Weiss [MW], giving higher order terms in the expansion. Knessl [Kn] has
recently obtained more accurate expansions based on the Fokker-Plank (forward)
equations. Our transient results for the extensions of Erlang’s model are all new.

Multirate Erlang systems have been analyzed before, of course. For example,
J.S. Kaufman [Ka] and J.W. Roberts [Rob] independently found a way to calcu-
late the steady-state distribution of the model. Marty Reiman [Re1] analyzed it in
the interesting case of critical loading. Peter Key [Ke] has a clean analysis, and
Gazdzicki, Lambadaris, and Mazumdar [GLM] have a thorough large deviations
analysis of the model than appears here.

Our model of trunk reservation is weakest in its scaling. Marty Reiman [Re2]
has shown that the optimal scaling of the size of the reserved region is generally
not , but depending on the parameters and and the desired blocking prob-
abilities, is either log , or simply .
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Chapter 13

The Anick-Mitra-Sondhi Model

Just as Erlang’s model is the basic model of circuit-switched communication, the
Anick-Mitra-Sondhi model (AMS model) is the basic model of packet-based com-
munication. It captures the essential feature of packet systems (statistical multi-
plexing), and more realistic models must contain the AMS model as a subsystem
or as a limiting case.

The model consists of statistically independent and identical traffic sources
feeding into a buffer (concentrator). The packet sources are modeled as sources
of fluid. This scaling makes sense if either packets are very small, so that only
large groups of packets make significant demands on resources, or if sources may
create a large number of packets during periods of high activity. To allow sources
to have several levels of activity, we model them as finite state ( -state) Markov
processes. Each state 1 has an associated “activity” , which repre-
sents the rate of production of fluid for sources in that state. We can incorporate
a fixed number of classes of sources, each with their own statistics, by allowing
the Markov process to be decomposable (Definition A.140) as in Figure 13.1. The
fraction of sources in each class is fixed by the initial condition. We suppose that
there are no transient states in the source model. This excludes, for example, the
touchy case of one transient source leading into all the subclasses, so that the num-
ber of members of each subclass is random.

Figure 13.1. An AMS model.

Here is the detailed source model. Suppose that each source has possible
states. Then a source may be identified with a vector in whose components
are all zero except for component if the source is in state number ; this compo-
nent is equal to one. That is, the one points to the index of the state the source is
in. Then adding all vectors representing the sources, we obtain a vector

number of sources in state 1 number of sources in state
The vector is a Markov process. We calculate the rates of its transitions as
follows. Suppose that each source goes from state to state at rate . That is,
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transitions in direction

0 0 1 0 0 0 1 0 0

due to a change in the state of a specific source occur at rate , where has a
1 in the component and a 1 in the component. Then for the com-

posite process , both jump directions and jump rates are indexed by the double
index , and , since there are independent sources with poten-
tial transitions (of the Markov chain) from to . Now defining

1

we see that satisfies the usual scaling (5.1). It has jumps and associated
rates , where

13 1

The buffer is modeled as an infinite-capacity fluid reservoir having an output
pump with rate . When the aggregate input rate of fluid is, say, , the
buffer content increases at rate . When the input rate is , the
buffer drains at rate . Since each source in state produces fluid at rate

, the buffer content satisfies

if 0, or if 0 and
0 otherwise,

13 2
where . The scaled buffer size is . We now derive
some representations for the buffer size, to be used below. Let be the last time
before that the buffer was empty. Then from (13.2)

For any , (13.2) implies that

0 13 3

since is always positive. On the other hand, for all ,

Therefore, if 0 for some , then for any we have

sup

sup 13 4
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It is sometimes convenient to lower the dimension of the state space by one. Since
1, we can replace by the 1 -dimensional process

where there are now transitions with only a 1 or a
1 , corresponding to transitions from or to state . For example, in a two-state

system with we can consider as the number in state one
alone, and we obtain

1
1

13 8

Our goal is to study the behavior of the buffer. For example, how often is it
non-empty? How often does it exceed a level ? How effective are certain con-
trols for reducing the frequency of large buffers, or overflows in finite buffers?
Equivalently, how large does the buffer have to be to have a loss rate (proportion
of information that “overflows”) less than exp for some given ?

It is easy to see, at least intuitively, that the occurrence of a non-empty buffer
should be a large deviation whenever the system is stable. When the number of
sources is large, the strong law of large numbers implies that the proportion of
sources in state should be close to the average value

lim 13 5

[For a more explicit form of see (13.9) below.] But then the
rate of fluid production should be near almost all the time. Thus
is the average rate of production for one source and is the average state for the
scaled process . The buffer fills only when this rate exceeds , and any stable
system will have . Therefore, the steady-state probability that the buffer is
non-empty is about exp , where

inf 13 6

: 0 13 7

This is a standard Freidlin-Wentzell level crossing problem. Of course, by defini-
tion 0 1, so that we need consider only paths satisfying this condition.

In §13.1 we examine the simplest model in detail: sources have only two states,
called “on” and “off.” We will also examine one case of more complex sources,
and the effects of various types of controls on the statistics of the buffer. Usually
we are unable to solve the resulting variational problems completely, so we exam-
ine certain limiting cases (large and small buffers) to get both analytic formulas
and a feel for how the solutions depend on the various parameters of the mod-
els. In the cases where we don’t solve the variational problems analytically we
try to provide enough information to make the resulting numerical problems easy
to solve. We are often able to turn qualitative information on the solutions into
quantitative statements; for example, see §13.7 on the effectiveness of controls.
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From (5.7), we can calculate for the AMS model:

where the sum is over all possible transitions to . By (13.1), is affine
in ; hence

for a matrix and a vector . In general, then, relaxes exponentially to a
constant satisfying

13 9
[This is the same one defined in (13.5) by Theorem 6.89.] For example, in the
simple on/off system,

1

0 exp 13 10

This is the model studied extensively by Anick, Mitra and Sondhi [AMS], Kosten
[Ko] and others. Because it is the simplest it is simultaneously the model about
which we can say the most, and which is the least realistic. Nevertheless, as with
any simple model, it has features that we use for insight into the behavior of more
complicated models.

Figure 13.2. The simple AMS model with 2, 1, and 0.

Each source is assumed to go from on to off at rate , and from off to on at rate
. This means that the long-run (steady-state) probability that a source is on is

. As in (13.5) or (13.9) and (13.10) let

13 11

While a source is on we suppose that it pumps fluid at rate one. Hence we expect
the buffer to be non-empty whenever more than sources are on. To make the
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problem nontrivial we make the following assumption, which is enforced without
further mention throughout this chapter.

1; equivalently, 1 .
Since the sources are independent, the long-run probability that more than

sources are on is the probability that the sum of Bernoulli( ) random variables
exceeds . Using Chernoff’s Theorem for Bernoulli random variables as in Ex-
ample 1.15, we see that this is about equal to exp , where

sup log 1 log 1 log
1
1

13 12
So now that we know the answer, let’s do the proper calculation and prove it!

Our process has an associated local rate function

log
4 1

2 1
1 4 1

13 13
provided that 0 1 or, if 0 or 1, that points inwards. As explained
below (11.20), this follows from (7.16)–(7.17), since our process is a birth-death
process (with jumps of 1 ) with birth rate 1 and death rate (restricted
to [0 1]). Now to calculate the frequency of a non-empty buffer, use the general
principle that steady-state probabilities have the same asymptotic form as upcross-
ing probabilities. We haven’t proved this yet for the AMS model. We’ll justify the
calculation in §13.6: for now, let’s proceed formally. The upcrossing problem is
associated with the variational problem of calculating

inf :

: 0
13 14

where, from (13.11), is the stationary probability of the process .
We have solved the level crossing problem for birth-death processes before in

§11.5. We recapitulate the solution given in Theorem 11.15. We have

log
1

log 1 log
1
1

13 15

Moreover, the path that achieves this cost (shifted so that 0 ) is the
time reversal of , namely

0 13 16

So we have not only shown that our original heuristic calculation of the frequency
of non-empty buffers is correct, but we now know the most likely way that the
buffer becomes non-empty.

Prove that indeed (13.15)–(13.16) solve the variational problem
(13.14). Hint: show that the conclusions of Theorem 11.15 hold despite the fact
that the hypotheses do not.
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Define and through (13.15)–(13.16). Under the stability
condition , for any and ,

Let be the first time the buffer becomes non-empty. For each and ,

as

So, once we justify the relations between the variational problem and the cal-
culation of probabilities, the results (Theorems 6.17 and 6.59) of Chapter 6 will
imply the following.

0

lim sup 0 0 1

0

1

We wish to estimate the steady-state probability that the buffer exceeds any
given level . We argue that this can be estimated as

13 17

inf : 13 18

: 0 13 19

and we define in (13.19) by (13.4) with replacing and 0 0.
We explain this equation below; but first some notation. We need to extend the

map that takes to as in (13.2) and (13.4) for a general continuous path
and starting quantity 0 . We take (13.2) as our basic definition, with

replacing (the paths are one-dimensional here):

if 0, or if 0 and ;
0 otherwise.

13 20

We attempt to generalize (13.4). For any 0 and any 0 define

inf 13 21

Clearly there is a time [0 ] where 0 if and only if
[note that the dependence of and on the chosen path is suppressed in
our notation]. Therefore

sup if

if .
13 22
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If we define as the last time the buffer is empty, then [0 ]
if and only if . We have the following equivalent definition of ,
where recall that we are considering only 0 and 0 0:

if

if .
13 23

We write when and are related by any of the equivalent
representations (13.20), (13.22), or (13.23). The initial point and the initial time
(which we took to be zero) do not appear explicitly in the notation.

We can now rewrite our variational problem with a form of slightly different
than that given in (13.19):

: 0 13 24

It is not hard to see that the process must be zero quite often; below we
bound it by a random walk with negative drift and a boundary at zero, showing
that it becomes zero quickly starting from any positive value.

Here is why we expect Equation (13.17) to hold. The Freidlin-Wentzell theory
tells us that we expect most steady-state quantities associated with rare events to
be estimatable by variational problems, as argued in §6.2. In fact, Theorem 6.59
was designed precisely for the present case. We show that the conclusion of The-
orem 6.59 holds for the function in §13.6. Therefore we concentrate on solv-
ing the variational problem (13.18). First we give some simplifications that enable
us to solve it, then we perform the calculations. The main difficulty in solving
(13.18) is that is defined in terms of an infimum, or in terms of an unknown
time . So our next goal is to reduce the variational problem to a standard one.

If a path has minimal cost and makes , then we claim that we can
split time into two distinct intervals: 0 , and . For [0
we have , while for we have .
This implies that we may replace the set of (13.19) by

: 0 13 25

without changing the solution. There are a few things to explain about this defini-
tion. In Exercise 13.7 we show that for any solution of the new variational prob-
lem, for 0 , and that the change of “ ” sign to an “ ” sign is
also justified. Finally, the simplification we achieve is to split the variational prob-
lem into two distinct and standard variational problems: the cheapest way to go
from to , and then the cheapest way of making an integral equal to starting
from .

It is easy to see why (13.25) gives the correct solution to the variational prob-
lem. First, we are concerned with paths that start with 0 0 and 0 .
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Therefore the first item of business must be to get to above level ; until
it does, remains zero. Let us call the time when the buffer is first non-
empty (the time when first crosses the level ). Next, suppose that the path
that achieves a buffer has 0 at some time .
Let denote the largest such time. Then we clearly have . Furthermore,

0 since , so cannot follow the most likely path . Now
construct a new path from by deleting the time from to :

.

Then it is easy to see that is absolutely continuous if is, , and
furthermore makes .

This proves that we can restrict our attention to paths for which is never
zero from the time first crosses the level until the time the buffer reaches the
prescribed level ; that is, the map is given by the integral of over
the whole interval. By a similar “deletion” argument, paths with for

can be ignored, and we conclude that (13.25) gives the same solution to
the variational problem (13.18) as (13.19).

We have reduced our variational problem to the following.

inf inf 13 26

: 0 13 27

: 0 13 27

[We could, of course, have shifted time by in the definition of so that
the two pieces of the path would match up.] Now our variational problem
has split into two nearly standard variational problems. Indeed, we already found
inf in (13.15). We now turn our attention to the solution of the second
variational problem in (13.26).

The second minimization in (13.26) is constrained:

minimize subject to 13 28

Let us use some “soft” (meaning not based on calculation) arguments to show
that any solution to the variational problem (13.28) must satisfy .
If then at some earlier time , and the buffer was
larger. Therefore there was an earlier time when the buffer was equal to , and

. So suppose that . For smaller than , let be the path
that follows until time , then follows until it reaches (say at ). In par-
ticular, extends to times larger than . This path is well-defined at least for

larger than the last time that . If the buffer size at is
greater than then is not optimal, since 0. So, assume the buffer size
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Any solution of the variational problem (13.26)–(13.27) solves
(13.18)–(13.19).
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K

Intuitively, this is a continuous-time version of the problem of minimizing a func-
tion subject to a constraint . We map the functional to a
function by considering the value of and at a mesh of equally spaced
points on [0 ], and letting

This is a standard problem in calculus; if there is a minimum, then it should occur
at a critical point for the function .

at is smaller than . Now the path , which splits from at [ ], gives
a continuous value for the buffer size at , as a function of . Since the buffer
size corresponding to is below at and above at , there is an
intermediate time with buffer size . Furthermore, the cost of this new path is
strictly lower than the cost of , since the two agree on [0 ], but do not agree on
the entire interval ] (since they end up in different places at time ), and the
only path with zero cost on a time interval is . Therefore we have proved that
without loss of generality we may take . Let us summarize our discus-
sion concerning the variational problem: for proofs see Exercises 13.7–13.8.

Show that we may restrict to paths satisfying for
, and restrict to paths satisfying , and

0 . Hint: see the preceding paragraph.

Prove Lemma 13.6. Note that you cannot assume that there exists
a solution to (13.18)–(13.19).

One way to solve the constrained optimization problem (13.28) is to introduce
a Lagrange multiplier (for explanation and justification, see the detour below
and §13.6) and to consider the extreme points of the functional

Therefore, the Lagrange problem we need to solve is

inf : 13 29

: 0 13 30

We then need to choose to satisfy the buffer size constraint in (13.28).
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We proceed to solve the Euler equation for the Lagrange problem, and postpone
the technical justifications to §13.6. Since the integrand in (13.29) is independent
of , the DuBois-Reymond equation (C.3) is

constant; 13 31

since is free, the transversality condition (C.4) implies that the constant in
(13.31) is zero. Now using the definition of in (13.12), recalling (C.6) [or sim-
ply copying the argument given for the free 1 process (7.23)] and using
the general relation we obtain after some algebra the explicit
expression for (13.31)

1 4 1 0 13 32

Squaring and isolating we obtain the equation of a hyperbolic cosine:

1 4 1 13 33

Taking derivatives with respect to time in (13.33) we obtain the Euler equation

1 2 1 2 13 34

Prove that (13.34) is indeed the Euler equation. Hint: use (C.6),
write , and let denote the square root in
(13.13). Delay the expansion of derivatives of and as much as possible.

We are interested in solutions of the first- and second-order equation with initial
conditions 0 and with 0 1 0, as determined from
(13.33). But Equation (13.34) for is linear in , and therefore by Theorem A.67
has a unique solution for every initial condition. This seems to establish unique-
ness of the solution to the variational problem. However, life is not that easy: a
careful inspection of the statements in §C.4 shows that the DuBois-Reymond and
the Euler equations need hold only a.e. and that there is no guarantee in general
that the solutions be continuously differentiable. But then Theorem A.67 does not
apply! Fortunately, in our case, this line of argument can be made rigorous, al-
though this is not trivial. Exercise 13.46 resolves this issue: however, you should
not attempt this exercise before reading most of §13.6.

It will be convenient to search for the correct solution by studying the first-order
equation. Naturally, we are interested only in those values of for which the
solution satisfies for some 0. Expanding the right-hand side
of (13.33), collecting terms in , and completing the square, we find

13 35
4 13 36

13 36
13 36
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We see that (13.33) is the equation of either a hyperbolic cosine or a hyperbolic
sine, depending on whether is negative or positive. But the boundary conditions

0 eliminate the hyperbolic sine from consideration, so 0.
Check that (13.35) gives either a hyperbolic sine or a hyperbolic

cosine. Prove that when , 0 implies that 0. Hint:
substitute and use cosh sinh 1.

Figure 13.11. for a given value of . See §13.4 for the meaning of .

Now denote cosh . Since cosh is symmetric, the condi-
tions 0 imply 0 and 0, and we have

cosh

2
cosh and 0

13 37

Given we can now solve (13.37) for the constants in that order
(provided is such that 0) to obtain the optimal path .

Our next goal is to find . We can obtain an explicit expression for

2 2
13 38

Although this provides an explicit expression, it is too messy to be useful (or to
be worth writing down ). However, we can perform a numerical search for the
proper value of which is determined by (see Figure 13.22).
This is particularly simple because of the following properties of as a
function of , which we establish below:

1. It is monotone decreasing to 0 as .
2. It reaches infinity for a fixed positive value of (see Exercise 13.10 and The-

orem 13.16).
We summarize the results we have established concerning the solution of the

Lagrange variational problem.
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Lemma 13.12.

B

Properties of the solution of the Euler equation.

Definition 13.13.

Exercise 13.14.

Lemma 13.15.

Assume . There exists a unique function solving the
DuBois-Reymond and the Euler equations (13.33)–(13.34) with initial conditions

and . If then the
unique solution is given by (13.36)–(13.37), and satisfies
for some . In this case the solution is symmetric around , and its buffer
size is given by (13.38).

, and

where , , , , and are defined in (13.37), and by (13.33).

strictly decreases from to zero as increases from
to .

0 0 1 0 1 0
0

0 2

Note that there are multiple solutions to the DuBois-Reymond equation, since
we may stay indefinitely at the point such that 0. This ambiguity, however,
is resolved by the second-order Euler equation.

The analysis of our model as well as of its extensions relies on properties of the
solutions of Equations (13.33)–(13.34) with initial condition 0 . Note that
the following results are not restricted to the case 0, so that a hyperbolic sine is
a possible solution. Throughout the section we enforce the condition 1
(remember this is Assumption 13.3).

We now establish a lemma that is surprisingly difficult to prove. It yields an
easy proof of Theorem 13.16, which would otherwise be very difficult to estab-
lish. The lemma says that as increases, the time when reaches its max-
imum (if there is such a time) is strictly decreasing. We develop asymptotics for
this decrease in §13.3 and §13.4. You might think to prove this lemma from the
explicit formula for given in (13.37), but we were unable to do so.

1 2

1 4 1

Note that is the maximum of , since 0 and cosh 1 for any .
Also is the lower bound on , by Exercise 13.10.

Show that, when 0, it is strictly decreasing in for a given
, and it is strictly increasing when 0. Conclude that is decreasing in
. Hint: take derivatives in (13.33) and note that 1 0 and by assumption

0.

In order not to interrupt the flow of our narrative, we defer the proof of this
lemma to §13.6. The interested reader might want to try to prove it himself or
herself; our proof is long and involved, and there may well be a simpler one.
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( ) <

> , ( , )
( ) < ( ) < ( , )

( ) < ( ) <

( ) ,
( ) ( , ) ( ) >

( , )

µ λ( ) ( ) λµ ( ).

, ( ) >

( ) ( ) µ

For each the solutions of (13.33)–(13.34) with ini-
tial conditions , are continuous and strictly
monotone decreasing in . Furthermore, for each ,

pencil.

For any and there is a unique
such that . Furthermore, for each and

whenever .

0
0 0 1

0

lim

lim

This theorem states that the paths form a A pencil is a set
of paths that radiate from one point and cover the plane without any other inter-
sections. This is a useful notion in the calculus of variations, since it shows that
the paths have no conjugate points (we won’t go into these notions; see any book
on the calculus of variations for a discussion).

. Since the right-hand side of (13.34) is continuous in and is continuous
in by (13.33), is continuous in . Consider the paths when 0.
Equation (13.33) shows that larger values of have smaller absolute values of

for the same value of . This means that two different paths cannot
intersect while both are increasing. The theorem will therefore be proved if we
can show that there are no intersections where one path is increasing and the other
is decreasing, or where both are decreasing. But Lemma 13.15 shows that the
time when the paths achieve their maxima are strictly ordered: smaller
means a larger time. The paths are symmetric about this point, too, since they
are hyperbolic cosines. Therefore since they cannot intersect on the way up, they
cannot intersect on the way down.

We also have to examine the monotonicity when . This is easy, too,
considering the order of the paths near the point . Larger values of lead to
larger values of , so the paths are strictly ordered. If a path has a minimum
there is something more to show, but we leave this to the reader (it is exactly the
same as the case when the path has a maximum).

0 [0 1]
0 1 0

0

. Fix 0. Theorem 13.16 implies that there is a unique such that
. We only have to check the second statement. Since [0 1],

0 0 1 and 0 0, if we show that either is strictly monotone or
that the place where 0 is in 0 1 then we will be done. But (13.33) shows
that the only place where 0 is where

1 4 1

The left-hand side is positive, which is possible only for the right-hand side when
[0 1]. Since 0 0, the only solution that is not strictly monotone is a

(negative) hyperbolic cosine. Therefore, it remains to exclude the possibility that
1 0. However, if this were true than from (13.33) we get 1 .
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For each the function is strictly mono-
tone decreasing from to as increases from to .

For each , is strictly monotone increasing in
, and where

Substituting into (13.34) we obtain 0, that is, a minimum. This contradicts
0 1. This also establishes the last claim.

0

. Immediate from Theorem 13.16.

[0 1]
lim lim 0

. Consider as increases. By Corollary 13.17, if then
0. Theorem 13.16 then shows that is monotone decreasing as

increases. Therefore is monotone increasing as increases for every
0, and hence so is . The same argument proves the monotonicity of

with respect to if and 0.
If and 0 then is strictly monotone increasing in for

[0 ] [since cannot equal zero more than once]. Therefore Theorem 13.16
shows that is monotone decreasing in . This means that is
monotone increasing in . Taking the derivative with respect to in (13.33),

2 2 1

Since 0 1 0 the right-hand side is negative, at least near
. Moreover, for it to become negative (as increases) it is necessary that
1 passes through zero. But due to (13.33), this can only

happen if 1. Since 0 we conclude that 0, or that , for a
fixed value of , is decreasing in . Therefore, the larger , the smaller the slope
of at each level .

Figure 13.20. Comparing the areas for different values of .

Now shift the “upper” curve as in Figure 13.20 so that its endpoint meets the
“lower” curve, and we see that the total area is decreasing. Finally, the case

0 and is handled by one of the two arguments, depending on
whether is monotone in or has a maximum at .
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To see that as , simply note that is monotone in , and so
for each , is monotone increasing in . To see that 0 as 0,
note that 0 1 .

[0 1] 0

. Direct from Lemma 13.19.

Given , we can clearly find a such that and .

Figure 13.22. for 1, 2, and 3 4. The minimum of is
6 2 3.

Now given a value of we can compute the cost of the optimal path,
starting at , of getting a buffer size . From (13.31)

13 39

To evaluate the integral on the right of (13.39) consider first the interval [0 2]
where the optimal path is strictly increasing. We change the variable of integra-
tion from to , to obtain an integral of with respect to . Using
(C.6) and (7.23) as in the discussion leading from (13.31) to (13.33), and defining

1 13 40

we obtain the following form for the integrand :

log
4 1

2 1
log

4 1
2 1

where we use (13.33) to eliminate from the equation, taking the positive square
root since is positive, and we use (13.32) to simplify the square root on the left.
This part of the path starts at and ends at [the maximum of the
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Let be described by (13.8), and define by (13.4).
Suppose that . Then for each we have

where is given by (13.41), and where is the unique number greater than
that makes the quantity (13.38) equal to .

cosh: see (13.37)]. The same reasoning gives a similar expression for the path
from to , except that we choose the negative value for in (13.33), so
that the last square root appears with a minus sign. Finally, the cost, starting at

0 , of reaching a buffer size is the cost of reaching level [given in
(13.15)], plus the cost computed in (13.39). Collecting all terms, we obtain

log
4 1
4 1

13 41

These integrals can be evaluated explicitly, but there seems little point in giving
the evaluations, since they are quite complicated.

Even without having a complete closed form solution to this problem, we can
glean some information without much extra work. Consider the Euler equation at
the point ; that is, at 0 and at . We have

1

that is, the slope does not depend on , and is equal to the slope of the most likely
way of reaching , and of the most likely way of getting back down to from .
So even though the variational problem had two distinct regimes, there is a smooth
connection between the solutions (at least for the function and its first derivative).
This is not entirely coincidental; see the Principle of Smooth Fit for Queueing
Problems 13.63.

We collect our results in the form of a theorem. The proof of this theorem relies
on the correctness of the large deviations principle for the process , the appli-
cability of the Freidlin-Wentzell theory for the process viewed as a function
of , and the validity of our solution of the variational problem (13.18). These
results are established in §13.6.

1 0

lim
1

log

1

This is where we leave the exact calculation for the buffer of the two-state
model. To develop some insight into how the solution behaves, we consider the
asymptotic regimes of small and large. The first case is interesting because
buffers are expensive, and designers may try to minimize the buffers in a system.
The second case is possibly even more interesting because of its peculiar mathe-
matical properties. Also, both are interesting for investigating limits taken in dif-
ferent orders (i.e., investigating the effect of limits that don’t interchange, namely

and 0 or ).
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Figure 13.24. for 1, 2, and 3 4, and linear upper and
lower approximations derived in the next two sections. The lower bound on

is easier to calculate than the upper bound.

There are at least two approaches to the problem of calculating as approaches
zero. First, we could take our solution to the variational problem, examine limits
as , and find the consequences. The second approach is more direct, and
in any case shows some new ideas, so we follow it instead. We note that buffers are
filled by having the function follow a concave function with initial deriva-
tive equal to 1 . By Exercise 13.25, the function cannot get very high
before making a buffer of size . That is, we find that when is small,
is also small during 0 .

Show that if is concave, 0 0, 0 , 0 for
0 , and , then sup 2 . Hint: a triangle
makes the height largest.

This suggests that we consider the problem of finding the likelihood that a
process makes a buffer of size . That is, we replace the rates

1 and by

1 and 13 42

This provides an approximation of the variational problem, as established in Ex-
ercise 13.26 below. So, we consider the variational problem

minimize

over the set : 0

where the local rate function

log
4

2
4 13 43
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is now a function of alone (the subscript is used to distinguish the constant
coefficients case). We can now use exactly the same arguments that were used
in the solution of the variational problem (13.28). We can restrict to paths
that stay above and satisfy . Following the same Lagrange multiplier
technique, exactly the same steps show that in this case (13.33) takes the form

4 13 44

which is again the equation of a hyperbolic cosine.

Let 2 ; then

1

So cosh for some . Setting , 0 ,

2
cosh 13 45

and we have the new expressions

cosh
2

1
2

log 0

2

1
log 2

13 46

Therefore we obtain the explicit expressions

log 2
1

13 47

2
13 48

where is defined by (13.47). Given this value of we can compute as in
(13.39)–(13.41), with the new rates as in (13.42). Using the elementary integra-
tion formulas

log 1 log 1 1

log 1 log 1 1

the fact that
max

1
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and the obvious change of variable , we obtain after a
fair amount of (we recommend computer-aided) algebra

1
log 2

13 49

where is defined in (13.47). Therefore, substituting (13.47) and (13.49) into
(13.39) we find

2 13 50

Assume that the paths and start and end at , stay above
, yield buffer size , and optimize and , respectively. Show that

Hint: let denote either of the two paths. Substitute the estimate

sup 1 13 51

in the definitions of and and note that each path makes an area . To es-
tablish (13.51), show first (this is obvious if is decreasing,
and use symmetry). This implies (13.51) since and agree at (check the
derivatives).

1
0

sup

. The first claim is established in Exercise 13.26 above. Define
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Straightforward calculation shows that and satisfy

4

4 1 1
1

Now it is easy to see that as 0 we must have . This is because
the coefficients of the two differential equations approach each other. So by the
continuity of solutions with respect to parameters, Theorem A.68, the solutions
approach each other over any finite time interval, and furthermore the pencil prop-
erty (Theorem 13.16) shows that the solutions are associated with values of that
are close. Therefore the values of must be close also.

Therefore, for small values of we have

exp 2 13 52

We also have the following qualitative behavior of the solution as tends to zero,
directly from Theorem 13.27.

1. .
2. 0 1 . (This is true regardless of and .)

3. The maximal value of satisfies .

We see that as 0, the curvature of tends to infinity; in fact, as changes,
the function is simply magnified uniformly in the space and time domains.
This is a consequence of the nearly constant-coefficient behavior of the birth-death
process near . This is not true for large ; for example, in that case, the
function is always bounded by one.

For 1, 2, 1 2, take 10 and using (13.36)
and (13.37) compute , , and . For this , using (13.45)–(13.47) find the
approximating and use (13.50) to find the approximating value of .

Derive the asymptotic formula (13.52) from the exact formula
(13.41) by expanding the quantities , , , , and for large .
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The case of large values of again may be handled by going back to the varia-
tional problem, or by analyzing the exact solution and taking asymptotics; as in
the previous section, we perform the former. First note that large values of are
obtained by a function that is concave and bounded; therefore we must have

constant for long periods of time. So we are led to the question: Which
constant is it? Let us call the constant . The cost per unit time of holding at
is

0 1 13 53

and the growth of the buffer per unit time is . Then we minimize

cost
buffer growth

cost/unit time
buffer growth/unit time

1

13 54
Since , the relevant minimum satisfies and so occurs where the
derivative vanishes. A little algebra gives

1
1 13 55

with a (cost/buffer growth) ratio of

1
13 56

That is, for large values of .
We can obtain a more accurate approximation for , as well as additional

information, by calculating for large. First, from (13.39)–(13.41)

13 57

The last integral turns out to be a bounded function (we will show that it ap-
proaches a constant), so we see that for large values of , . This is another
way of seeing that constant as . We saw this in Exercise 13.10 by
noting that when then the curve is a hyperbolic sine, not a hyperbolic
cosine.

Now let us evaluate the integral in (13.57) as becomes large. First, since
is a hyperbolic cosine, it is nearly equal to an exponential for far from the axis
of symmetry. Since by Corollary 13.18 and Exercise 13.10 is monotone in
and is finite for each , we must have as . Algebraically,
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Exercise 13.31.
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from the exact solution (13.37), substituting for into the equation for we
see that near 0

exp
1

1
13 58

1
1

13 59

while near we have

exp
1

1
13 60

1
1

Hence as becomes large we have

log
4 1

2 1

log
4 1

2 1

13 61

where we use Equation (13.58) for as a function of in the first integral on the
right-hand side of (13.61), and (13.60) for the second. These integrals can be ex-
plicitly evaluated, but they are so cumbersome that there is little point in present-
ing the solution.

Now we claim that tends to exponentially fast (see Exercise 13.31), so
that the factor in (13.57) may be replaced by with negligible error. So,
by a combination of exact calculations and asymptotic analyses, we arrive at the
conclusion that, as becomes large,

1 13 62

The asymptotic path is an exponential increase to the level followed by an
exponential approach to the level , then a long holding time at (whose length
depends only on the value of and increases linearly with ), and a symmetrical
exponential path away from back to and then the final exponential approach
to .

Check that (13.59) gives 0 1 , as we know
critical paths for all values of do.

Show that log as . Hint: 0
algebraically as in (13.37). Also, as since

1 0 as .
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Section 13.4. LARGE BUFFER
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Theorem 13.32.

Proof

Corollary 13.33.

Proof
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B B
B T B

d
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r t
d
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r t

We now prove that the approximation that we have developed is valid. Consider
a path defined by (13.58), and then extended symmetrically about the time
that makes the path have area 2. Recall from (13.37) that is the time when
the curve crosses down.

lim sup 0

. The differential equations for the two paths approach each other since we
have as . Therefore (Theorem A.68) the paths approach each
other over any finite time interval. But we know the path is a hyperbolic co-
sine making an area , so is concave and symmetric. Therefore from time of order
one to 2 (which is of order ) the path is increasing, and we also know that it
never exceeds , so is even closer to for these times than from a time of
order one. To finish the proof we need to show that the time when the curve
crosses the level is close to . We can do this by showing that the curves are
exponentially close in for times 2. Using Exercise 13.31 we know that

approaches exponentially quickly as . A straightforward applica-
tion of Gronwall’s Lemma 5.4 shows that there is a constant 0 such that for
any 0,

sup 13 63

where 2 4 is an upper bound on the Lipschitz constant
for the differential equation (13.34) when is close to . It is easy to show from
(13.63) that the difference in area between and over a period of time of
length , say, is decreasing to zero as , and that the difference in area
during the time 2 is also decreasing to zero as . From this and
the symmetry of the solutions we obtain the theorem.

lim sup 0

. Both functions are concave and are nearly equal.
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( ) ( ( ))

( ) ,

( )
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( ( ) )
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( ) ( )
( ) ( )
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λ

λ µ

( (λ µ) )

λ µ

( . )

( )

> ε >

( ) ( ) < ε ( ) .

( )
( ) ( )

b nI B d B

n c c B d B

nc
n c

c c
I B B

B n c
O o n

n b c

nB
r T C T z t z

b t b t

b t B z s C ds

B C t
t

t b t

T

b t b t b B

t C t t
t C T t t T

1. Mean buffer.

Theorem 13.34.

2. Transient behavior of the buffer.

Theorem 13.35.

3. Universal shape parameters.

Based on the asymptotic solution, we can calculate a variety of interesting statis-
tics for the system. We will present the calculations without justification. The
reader is invited to prove whichever ones interest him or her.

exp

exp 2

exp
1

2

where is defined in (13.15) and is defined in (13.47). The second approx-
imation follows from the fact that is monotone increasing in , so nearly
all the relevant portion of the integral is near 0. The factor 1 2 should
be neglected since the error term is exp[ ] . That is, we have the following
result:

lim log

How long does the buffer take to drain after it attains a value ? Since we know
that , and that after the process will follow , we can say
that with probability approaching one, , where

1 exp
13 64

for all such that the right-hand side is positive, and 0 otherwise. That
is, we have the following result.

0 0

lim sup 0 1

Newell [New] mentions that the transient behavior of a buffer will exhibit a “uni-
versal shape,” given that it reaches a high level. He states that the buffer begins
to fill in a quadratic manner: buffer if it begins to fill at 0. Fur-
thermore, it empties linearly: buffer if it empties at . Our
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4. Size of buffer during a busy period.

5. Conditional length of busy period.

6. Duration of long busy periods.
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C

analysis for large shows that

1 for near zero

for near .

That is, we have calculated and for our model.

Suppose that we wish to calculate the probability that the buffer will exceed
in a given busy period (period of non-empty buffer). Then we can immediately
write down that

in a given busy period exp small

in a given busy period exp large.

That is, conditioning on the existence of a busy period simply eliminates the factor
exp from the buffer statistics.

Conversely, suppose that we know that a given busy period had a maximum buffer
content of . How long was the busy period? The length was, with overwhelm-
ing probability, however long the buffer took to drain from ; see Equa-
tion (13.64). is defined by Equation (13.37) where we find as de-
scribed by Figure 13.22.

We can calculate the probability that a given busy period will exceed in length.
The answer turns out to be the same as the 1 queue’s busy period, with
arrival rate 1 and departure rate :

lim
1

log busy period 1 13 65

Here is the calculation. Suppose that 0 for some smooth path
with 0 . Then we can reorder time so that 0 0

; just put all the time intervals where is positive at the beginning. We
find that the cheapest path that satisfies 0 0 ex-
tremizes

[ ] 13 66

That is, by our previous calculations, is an exponential, hyperbolic cosine, or
hyperbolic sine. Since 0 , 0 0, and , we must have that
is a hyperbolic cosine (it is the only member of that family that is not monotone).
Now look at the cheapest hyperbolic cosine that makes a given positive area in a
fixed amount of time, and minimize the cost over all areas. That is, find out how
much positive area is generated before the curve dips below . We obtain that the
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7. Maximum activity in a long busy period.

Theorem 13.36.

C

C
C

C
C x x

M M
z t C

o n

T

b t b t

z t

b t
B

z t

x
x

x
x

z t
z t z

I r I r

e x
x x

x
x

e x
x x

x
x

#( , )

/ /
( )

( )

ε > >

( ) ε ( ) > .

( )

( )

( )

λ ( )
µ

λ( )

( )
( ) ε

( ) ( )

λ ( )
λ( ) < ε
λ( ε) ε <

λ ( )
µ ε
µε < ε

( . )

minimal cost curve makes zero area; that is, the curve is a degenerate one, a con-
stant identically equal to . There are at least three ways of obtaining this result:
by straightforward but tedious calculation, by dividing time into intervals where
the curve is above or below and noting that the curvature must be nonnegative
in the portion below but nonpositive in the portion above, or by noting that it
is cheaper for the curve to hold at any fixed level below than any level above

and so we may lower cost by using the convexity of 0 with respect to .
The details are left to the interested reader.

Just as in the 1 queue, we can show that the most likely way that the buffer
has a long busy period is for for the duration of the period. Further-
more, this means that conditioned on a busy period being long, the maximum level
of the buffer is , so conditioning on high buffer content is very different than
conditioning on a long busy period. Here is a precise statement of the result.

0 0

lim max min 0 0

In this section we check that a large deviations principle holds for . We also
verify that the Freidlin-Wentzell theory applies to the calculation of fluctuations
of . We prove Lemma 13.15, and finally, we justify the use of a Lagrange
multiplier in calculating the minimal cost path that makes a given buffer .

We begin with the large deviations principle for . Our process does not
satisfy the hypotheses of Chapters 5 and 8, since there are two boundaries, at zero
and at one, and at each of these places the logarithms of the jump rates log
are not bounded: at zero the service rate goes to zero, and at one the arrival
rate 1 goes to zero. This is exactly the type of singularity encountered in
Erlang’s model at 0, and the same argument will prove the large deviations
principle in this case as well. We follow the argument of §12.6, subsection “The
large deviations principle.” The idea is to construct a process that is iden-
tical to whenever is more than from a boundary, but satisfies a large
deviations principle with a rate function that is nearly the same as .
The process we use has the following jump rates and directions:

1
1 1
1 1 1

0 1

1 0
0 0

13 67
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Theorem 13.37.

Definition 13.38.
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The process satisfies a large deviations principle with good
rate function .

Given an , Type intervals of time are those for which
and . Type intervals are the complement (everything

else).

From here the argument precisely follows that of §12.6, subsection “The Large
Deviations Principle;” the interested reader may fill in the details. For the record,
here is a statement of the result we now claim holds.

The joint process does not fall into the theory we developed in
Chapter 6. Our extension in §6.2 is close to what we need, but some points need
to be checked. Instead of trying to simply quote results, we will outline a proof of
the Freidlin-Wentzell theory for the process from scratch. We divide time
into two types of intervals.

0 1
0 2

Let us examine how much time is spent in each interval, and how the processes
behave. During a Type 1 interval, Kurtz’s Theorem shows that will most
likely approach (if it is not already near ), and therefore that will most likely
remain zero, and we expect this interval to be long. Now any Type 2 interval be-
gins (for large enough) with 2 and 0. Standard
estimates we now outline show that the duration of a Type 2 interval has an
exponential tail, so that (13.69) holds. This is proved in much the same way as
Lemma 6.28. First observe that if remains zero throughout the interval then
obviously satisfies (13.69). So, we make the following simple estimate to bound
the excursions of the new element . By Kurtz’s Theorem for we can find
a such that independent of the starting point [0 1]

max 0 1 0 13 68

Obviously cannot increase by more than 1 in any interval of length
. Therefore, independently of , we can bound over intervals of length by

an asymmetric random walk with strong negative drift (at least until becomes
zero). Once reaches zero, we know that is at most , and by Kurtz’s The-
orem it is most likely that remains zero and remains below for the rest
of the interval of length . We conclude from the results for random walks, for
example Theorem 3.4, that for defined above, there is a 0 and such that
for any ,

a Type 2 interval lasts longer than 13 69

Equation (13.69) gives us the tool we need to finish the proof of the applica-
bility of the Freidlin-Wentzell theory to . It says that we only have to look
at finite times with negligible loss of accuracy—that is, it is the counterpart of
Lemma 6.28. Once we have this, then as in Chapter 6 we can prove the results
below by simply considering the various types of paths that might occur after the
start of a Type 2 interval. The path might cause to exceed by a time
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Theorem 13.39.

B

Theorem 13.40.

Theorem 13.41.

Lemma 13.15.
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, where

Let denote the time between the beginning of neighboring
Type intervals that cause a buffer of at least . Then for any there is an

such that if then for any ,

If there is a unique solution to the variational problem of The-
orem 13.39, then for any and

is strictly decreasing from to zero as increases from
to .

[we specify in a few more sentences]. It might go back towards ,
leaving smaller than . Or it might vacillate, so that it would take longer than

to find out whether or not is going to reach . We can easily find a path
that makes buffer with a finite cost in time : simply take a straight line
from to one, then hold at one for time 1 . This has cost about

1 . According to (13.69), we can now choose so that the event of
vacillating has a larger exponential rate than the event of causing a buffer of by
time . This means that all the elements of the Freidlin-Wentzell theory are
in place. Following the arguments of §6.1 we arrive at the following results.

lim
1

log

inf

: 0

2 0
0 0

lim
log

1

0

lim sup 0 1

Note that because of the order in which we chose parameters we can take a limit
as 0 in Theorem 13.40, and obtain a limiting behavior for the occurrences of
non-empty buffers (“busy periods”). The buffer may become non-empty and then
have a few short busy periods while is nearly equal to . However, once
drops below by any fixed amount , then it is very unlikely that it goes back
up to again quickly. That is, the busy periods occur in bursts, and the Freidlin-
Wentzell theory estimates the distribution of time between the bursts, not within
the bursts. The limit as 0 gives the distribution between bursts, since the two
types of time intervals were designed to provide this separation. This finishes our
discussion of the Freidlin-Wentzell theory for .

Here is a restatement and proof of Lemma 13.15. We use the notation of Defi-
nition 13.13.
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. Since increases from to ,

1

1

13 70

by a change of variable and using . By Exercise 13.14,

strict monotonicity will be established once we show that the function
is increasing in for every in the interval [0

. That is, our goal is to show that

0 for 0 13 71

Since is quadratic in and 0 0, (13.35)–(13.36) imply

13 72
4 13 73

2 13 73

Therefore we obtain after quite a bit of algebra that

13 74

2 2 1 1

1 1
13 75

2 13 76

To derive (13.75), note that the derivative of is zero at and so

0 2

Now substitute this expression into (13.73), and eventually obtain

4 1 1

From here the differentiation is tedious but straightforward.
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Next we develop some inequalities that will help our analysis. First, it is clear
that 0, since

1
0 13 77

Therefore the only way (13.71) might not hold is if 0. By (13.76), this
only obtains when . This and (13.77) imply

1
13 78

On the other hand, since ,

1
13 79

Obviously, there will be a non-empty set of to examine only if (13.79) and
(13.78) hold simultaneously; this can happen only if

1
2

and
1 1

13 80

We are trying to show that

for 0 13 81

We simplify notation a bit by dividing through by , replacing all instances of
and by and , respectively. Our goal (13.81), after substituting (13.75)
and (13.76), reduces to showing

1 1 1

1 1 1
13 82

Note that

1 1 1 13 83

Let for some 1. Our goal, (13.82), becomes

1 2 1 1 1
13 84

We use the following two simple reductions:

1 1
13 85

1 13 86
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Therefore we are reduced to showing the following inequality:

1 1 2 1
1
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where the parameters satisfy the constraints

0 1 2 1

1
1 1

13 88

Let . Then the right-hand side of (13.87) equals

1
1

1
1 13 89

The right-hand side of (13.89) is a concave function of and is maximized at

3
13 90

There are two cases to consider in order to prove (13.87).

1. Suppose that 3 1 . Then the condition on in
(13.88) shows that (13.89) is maximized at 1 . At that point (13.89) is
equal to 1 [remember that this is the right-hand side of (13.87)]. But then
(13.87) holds, since

1
2 1

1
1 for all 1 1 2

since
2 1

1
2

1
1

2. Now suppose 3 1 . So, we need to check whether

1 1
2 1

1 3
2
3

13 91

The condition on is equivalent to 1 3 1 2, which also implies
that 1 3. We claim that the right-hand side of (13.91) is increasing in , and
the left-hand side is decreasing, so (13.91) holds if it holds for 3 1 2.
Using this value of , the left-hand side of (13.91) is 1 times

1
3 1 1

1 1 1

2 2
3

1
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r r r r I r
r t

r t T

Given a positive and , consider
the variational problem (13.28) for the basic AMS model. There exists a
so that the solution of the variational problem satisfies (13.31).

since (as straightforward but tedious algebra shows) the left-hand side has no min-
imum in 0 1 3 so that the minimum is at 0. The right-hand side is

1
2
3

1

This proves that (13.91) holds.
We need to check that the right-hand side of (13.91) is monotone increasing in
for 1 1 , 0 1 3. This is a simple exercise we leave to

the reader below.
We have shown that is monotone decreasing in . It is not hard to show

that 0 as , or that as , either directly from the
formula (13.37) for or following the asymptotics of §13.3 and §13.4.

Show that the right-hand side of (13.91) is monotone increasing
in for 1 3 1 2, 0 1 3. (You might just want to check that
the derivative is positive.)

Now we sketch a proof that the Lagrange multiplier rule applies to the AMS
model. That is, we justify (13.31), the key equation in our analysis of the model.
We would have liked to use standard results in the calculus of variations. Unfor-
tunately, we could not find one that pertained to this model, since there are bound-
aries at 0 and 1 where is infinite for finite values of .

Lagrange Multiplier Rule
0

We prove the rule by the following sequence of steps.
1. Show that an auxiliary variational problem min has a solution.
2. Show that the solution of this problem satisfies the Euler equation.

3. Show that there is a subclass of solutions that satisfy .
4. Show that the minimum of the solutions over all also satisfies the transver-
sality condition.

5. Show that any solution to the auxiliary problemminimizes the original prob-
lem.

Our argument is based on the following technical lemma. Define the vector
as 1 , which is the vector of “on” and “off” sources (we have been using
in our analysis since is easily derived from ). Further define and
as the same as the values of the one-dimensional path . You can check that this
is the natural definition as given in Chapter 5. For any path and time 0
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Our next lemma states that the average cost of a path is greater than
the cost at its average point .

.

sup 1

sup 1

sup 1

Note that the only property of our model we used in the proof is the linearity of
the jump rates with respect to . We also need the following definitions.

1
the minimum time a path takes to make area .

inf
0

1
see also (13.55).

0
1

0 see also (13.56).

[0 ] : 0

Show that if 0 then there exists an so that the
following hold. If is any path in and 1 for some in 0
then there exists a path in that never exceeds 1 and also satisfies

. Similarly, if goes below it can be replaced
with some that does not. Hints: the second claim is easy—just replace the seg-
ment below with a segment that stays at . For the first part, assume 1
for and set for notational convenience 0 , and 0.
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Exercise 13.46.

Lemma 13.47.

Proof

Lemma 13.48.

Proof

H r K T B T r Kr
d x
dx

x

r

r
r

d
dx

K

r Kr K

r t

K T B r t
G T

H r K T B H r K T B

H r t H r K T B
r t C r r G T H r K T B A

A r
H

K T B r t

C r t t T
r t
r t C

C

f r r dt r AC r r T C

( , , , ) (!( , ) ) ,

!( , )
( . )

> ε ε

!( , ) !( ε, )

( ε)

!( ε, )
>

!( , ) > !( ε, ) ( ε).

ε

( )

> ( )
( )

( , , , ) ( , , , ) < .

( ) , ( , , , ) <
( ) ( ), ( , , , )

> > ( )

( ) < ,

( )

( )

( , ) , ( ) ( )

For each fixed , , and , there exists a function in
such that

For each fixed , , and , the function of
Lemma 13.47 has the following properties:
(i) for all .
(ii) satisfies the Euler equation (13.34).
(iii) satisfies the Dubois-Reymond equation (13.33) with replaced by a

different constant .

Using Lemma 13.44 show that

0
0

as 1 13 92

and since 1 conclude that for all small,

0 1 0
1

1 0

0 1 0 1

Therefore the path that remains at 1 is better.

Prove that there is indeed a unique solution to the variational
problem, given through the solution of the DuBois-Reymond and the Euler ODEs.
Hint: use the arguments of Exercise 13.45 to avoid singular points. Use arguments
as in Lemma 13.47 to show existence of solutions. Use Theorem C.12, Theo-
rem C.18, and the argument preceding this exercise to show uniqueness up to the
point where 0. Now show an optimal solution cannot stay constant at its
maximal value for any interval of time.

0

inf

. is bounded below, since [0 1], and for
. Now by Proposition 5.46, : is

compact for each finite . By Exercise 13.45, we can restrict to paths that do
not approach either zero or one. But then Lemma 5.42 implies that is lower
semicontinuous and the result follows from Theorem A.31.

0 0

1 [0 ]

. Part (i) is established in Exercise 13.45. We prove the rest by using The-
orem C.13: it states that any solution of a minimization problem of the form

min : 0
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will satisfy the Euler equation

0

if is smooth in , convex in , and bounded for bounded. Our problem has

13 93

which satisfies these conditions when is bounded away from zero and one. By (i)
any solution (which necessarily exists by Lemma 13.47) is uniformly bounded
away from zero and one. Therefore satisfies the Euler equation.
Since satisfies the Euler equation, it satisfies the Dubois-Reymond equation.

We write this equation as follows:

1 4 1

where arises since we don’t know that the transversality condition holds (
is not free in this problem). We can obviously absorb into when 0,
resulting in the new equation

1 4 1 0 13 94

with . This completes the proof of the lemma.

0 1
0 0

. We will not provide a complete proof of this lemma. It is based on cal-
culations similar to those that established Lemma 13.15. These are involved and
not particularly illuminating, so we just sketch the ideas.
For each value 1 2 and each larger than a minimal value (which can

be calculated but there’s no point in giving an explicit value) there is a such
that the solution to (13.94) with 0 has as its maximum. It is easy to
see that the positive time with is decreasing in and increasing
in . Therefore is increasing in if we adjust so that .
There are some complications in that there might be small values of for which
a solution exists, also, but it is easy to see that this solution is monotone in as
well.
There might be some problems with monotonicity for certain small values of
and . However, it is easy to show that as , and

0 as approaches an appropriate minimum. Therefore we are always
able to find at least one solution, which is all the lemma claims.
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Proof

Proof of Theorem 13.43
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For each fixed , let minimize over the set with
free, and with defined by Lemma 13.49. Then satisfies the transver-
sality condition. Specifically,
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. We prove the condition assuming that is a smooth function of . The
proof of smoothness is again a detailed calculation along the lines of the proof of
Lemma 13.15, and we omit it for lack of space and motivation.

0

using Lemma 13.49, integrating by parts, and noting that 0 0

using the Euler equation

since in order that . We use the symmetry of
about 2 to see the result at time zero.

. Given , minimize over with ,
obtaining and . This pair clearly minimizes over paths satisfying
0 and . Furthermore, the path satisfies the

Euler equation (13.31) with boundary condition (13.33). This concludes the proof
of the Lagrange multiplier rule.
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13.7. Control Schemes
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People continually propose new control schemes for packet networks. Many of
them are designed to overcome the large latency (delay-bandwidth product) in-
herent in long-haul high-speed data transport. Our analysis specifically neglects
the problem of delay. Instead, we look at some simple paradigms for control that
can be analyzed easily using the calculationswe have just performed. Our controls
are supposed to reduce the frequency of buffer overflows. We find the steady-state
probability that an infinite buffer exceeds a level . This has the same asymptotic
form as the steady-state overflow probability of a finite buffer of size , since
steady-state probabilities and upcrossing probabilities have the same form. We
obtain both quantitative and qualitative features of various control schemes.
Our purpose here is to illustrate the use of large deviations techniques and to

obtain some insight, rather than to prove every statement as we would if this were
a pure mathematics book. We shall therefore leave some calculations unjustified;
some for lack of space and motivation, some for lack of ability.

One of the simplest control schemes is to refuse more than sources being ac-
tive at the same time. That is, the control enforces the inequality . How
effective is this at reducing buffer overflows? The precise model here is the fol-
lowing. We have

1 1
0

1
13 96

This model has a standard flat boundary at as well as the nonstandard flat
boundary at 0 that we have analyzed before. Now let’s see what effect the
level has on the buffer statistics.
Consider first that 1 is no control at all, and allows no overflow at

all. We might expect that there is a smoothly varying function with

exp

with 1 and . But we know that the most likely way
large buffers are formed obeys [see (13.55) for the definition of ].
Therefore we know that

1

That is, the control scheme is completely ineffective in reducing the buffer when-
ever , at least to the leading order term in . This holds for all .
In fact, each fixed buffer level has an associated for the uncontrolled

problem ( 1) that reaches a maximum . [The function is
in the notation of Equation (13.37), where we solve (13.37) for in terms

of and then substitute to find and .] The cutoff control with any level
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above is thus ineffective in reducing the frequency of buffer overflows; that
is, for .
We can easily estimate the effect of the cutoff control for large and .

The cost per unit time of remaining at level is 1 (see Ex-
ercise 13.52), and the amount of time needed to fill to level is about ,
so the total cost is

1

as opposed to
1

Since minimizes this function, clearly

cost
0

Therefore we don’t expect the cutoff to help much until we are well away from
.

Figure 13.51. Cost/buffer for large , 1, 2, 1 2.

The cost of holding at level equals 1 .
Why? Clearly if there were no barrier at that would be the cost, but the control
places a boundary at . Calculate the cost using the theory of Chapter 8. Alter-
natively, give a soft argument for why the cost couldn’t go up, and this boundary
can only make the cost higher, so the cost doesn’t change.

The preceding discussion involved no new calculation, and hence holds for a
wide class of models: if there is a unique point where for a long
time minimizes a cost function, then we can say:

Restricting the state space without getting rid of this function won’t change
the cost.



363






{

1
1

1

1 1

1
1 1

2 1

1
2

2 1

1
2

2
1

1

1

•
•

=
− =

= ≤
= ≤ ≤

− =

=

=
−

= ≤
−

≥
≤

=
↑

Section 13.7. CONTROL SCHEMES

n

n n n n
n n
n n

n n n n

n n

n
n n n

n n
n

n
n

n n

2. Bit dropping.
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Getting rid of this set changes the cost.
Just barely getting rid of this set doesn’t do much if the cost function is
smooth.

In packet voice or video communication the desiderata are different than for data.
In particular, faulty packets can be tolerated, whereas in data transmission all
packets must be received correctly, so that dropped or garbled packets must be
retransmitted or reconstructed. Clever coding schemes have been developed that
allow portions of a voice or video packet to be dropped without undue degradation
of the quality of the perceived signal. This allows graceful degradation of perfor-
mance in the event of network congestion: the packets are trimmed down in size,
and the network load decreases without dropping any packets.
We now specify three models of bit dropping.

. This model has a watermark level for the buffer. When
arriving packets are trimmed to a fraction 1 of their original size.

When no trimming is done. Buffer evolution is described by
, or and

0 0 and
0 and

, or and .
13 97

This determines the map
: for the single watermark model.

. This model has two watermark levels for the buffer.
The watermarks define two modes of operation for the buffer. Mode 1 is when
arriving packets are not trimmed, and Mode 2 is when packets are trimmed to a
fraction 1 of their original size. The system changes from Mode 1 to Mode
2 when the buffer reaches level . It changes back to Mode 1 when the buffer
reaches level . Therefore the system exhibits hysteresis: when the buffer is be-
tween and , the mode of the system is determined by the history of the sys-
tem, and not only by its current state. The equations that describe the evolution
of the buffer are the following:

Mode 1 with 0 or
0 0 and

Mode 2.
13 98

Equation (13.98) and the description of mode changing determine the map :
for the dual watermark model.

The single-watermark model is a limit of the dual-watermark model as
. You might wish to determine in which space this limit occurs. (It’s not in ,

since the derivatives near don’t converge.)
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Full trim
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Generic calculations.

Assumption 13.53.

Assumption 13.54.
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λ µ
, ( )( ) , ( . )
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( ) ( )
<

< ρ <

ρ <

The mode changes from 1 to 2 when , and changes from 2 to 1 when
. Furthermore, if the mode changes from 1 to 2 at time then

. This model has a single watermark , but is similar to the dual-
watermark model with 0. It not only has incoming packets trimmed by a
factor 1 when reaches , but all packets in the buffer are also trimmed.
The trimming continues until the buffer reaches zero. In other words, the two
modes Mode 1 andMode 2 obtain just as in the dual-watermark model. The equa-
tions of evolution of the full trim model are

Mode 1 with 0 or
0 0 and

Mode 2.
13 99

0

13 100

Equation (13.99), the description of mode changing, and (13.100) determine the
map : for the full-trim model.
Our goal in this section is to find the asymptotics of the distribution of the buffer

when various bit dropping strategies are in effect. We are therefore going to con-
sider the problem

inf : 13 101

: [0 ] 0 13 102

where 0 and the bit dropping strategy are given. The functional depends
on the bit dropping strategy employed as described above. In practice we take
functions to have and 0 . We know that the buffer
remains zero while , and so the first portion of any minimal path must be a
minimal cost trajectory to the level . Thereafter we need to solve a variational
problem involving the buffer.

There are some common features in the analyses of the bit dropping models. Each
model is identical to the original simple AMS model for intervals of time. There-
fore it should not be surprising that the solutions of the models are composed of
segments of the solutions to original AMS models, pieced together, over these in-
tervals of time. We will provide complete details of the analysis for one model
only, namely the single-watermark model. We solve all the models by consider-
ing which types of intervals can appear. To avoid trivialities we assume that

1.
If then the buffer can reach, but never exceed, . We also need condi-

tions to help us piece the segments together.
The solutions to the variational problems are continuous, and

possess continuous first derivatives.
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The first condition in Assumption 13.54 is obvious, since the only paths in con-
tention to be minimizers are absolutely continuous. The second condition is far
from obvious. We give it the name “The Principle of Smooth Fit” and discuss, in
Principle 13.63 below, why the principle should be expected to hold for single-
queue problems, and in particular for one of our bit dropping models. General
conditions for this to hold are given in Theorem C.18. We do not provide a proof
for our case; we simply assume that any optimal path satisfies both of these condi-
tions. We see in Lemma 13.55 that Assumption 13.54, together with appropriate
boundary conditions, suffice to uniquely specify the optimal path for the problems
we consider.
We now define the various segments of solutions that will be pieced together to

form solutions of the variational problem (13.101)–(13.102). For define

Next define

0 13 103

is the cheapest path from zero to , and is the beginning of any optimal path
for achieving a positive buffer. Define as the extension of for positive
time, and as the time when :

0 13 104
1

log 13 105

Given an 0 1 define as the minimal cost hyperbolic cosine from zero
to that satisfies

0

or
13 106

Here “minimal cost” means cost while bit trimming is in effect. That is,

cosh

where , , , and are defined by (13.36)–(13.37) with replaced by and
with determined by the last equation in (13.106) with . Given
[0 ] and define as the minimal cost solution (with the original parameter
) of (13.31) with , , , ,

and with defined in Lemma 13.55 so that

13 107
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Let Assumptions 13.53, 13.54 and 13.56 (below) hold and fix
, , and . Given let and solve the differential

equations (13.33)–(13.34) with parameters and respectively as the Lagrange
multipliers, and is replaced by for . Then there is a unique so
that

We can find a solution to (13.107) by Lemma 13.55. Note that might be a
hyperbolic sine or a hyperbolic cosine. Finally define

13 108
This is the final portion of any optimal curve. The time will be chosen later,
depending on the first portion of the optimal curve.
We construct the solutions to the variational problem (13.101)–(13.102) out of

segments of solutions of the original AMS model. We piece these segments to-
gether using the “Principle of Smooth Fit” 13.63: is continuous. The solu-
tions will turn out to have one of the two following forms.

Case I
0

0

,

Case II

0
0

.

13 109

It turns out that the form of the optimal path is determined by the following simple
condition:

Case I 13 110

Case II 13 111

Does there exist a function of a form given by (13.109) with continuous
first derivative? Case I naturally has the derivatives of and match
at if since both are equal to there. Similarly
and have matching derivatives. Therefore the question is only about Case II:
does there exist a point 0 1 such that and with

? Similarly, do and match smoothly? The answer
to this question is affirmative, and is given by the following lemma.

1 0 0

1 0 4

2 5

3 6
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Given , is monotone increasing in .

K L
L

x B
d
dt x B

K
K K C C
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Remark.

B

Assumption 13.56.

Proof (partial)

Proof of Lemma 13.55
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T K
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B K
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r K K

r r K r
K
K K K B r K C

K T T K
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r T K C K
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r T K

r C

r T x
K T r T x
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r

The paths and are and respectively. We can
imagine as starting at a time and being defined backwards in time.
In the parlance of ordinary differential equations, we shoot backwards from

to . Then we view the solution in forward time. The same rea-
soning shows that and match smoothly. The proof of Lemma 13.55 is im-
mediate from the following result. First recall from Corollary 13.21 that for each

[0 1] and 0 there is a unique and path such that .
We let .

0 0 1

. Here is a proof of the assumption for the case [ 1 ; but
the case [0 must, at this point, be described as a conjecture.
Consider paths for small, so that the paths reach one in finite time.

Call this time . We have for by the calculation in
Exercise 13.10. As increases the paths are monotone decreasing, and as shown
in Figure 13.20 (and proved in Lemma 13.19), the area they make between time
zero and time ismonotone increasing. Therefore for some smallest value of ,
the area between the curve and between time zero and time is exactly
. Now as we increase the area continues to increase. Therefore there will be a

time when the area is equal to . Furthermore it is easy to see that the
value of is decreasing as increases (again just look at Figure 13.20).
Now the value of is also strictly decreasing in for each fixed . Therefore
we have shown, for small enough , that the lemma holds.
Let us now continue to increase until ; that is, , and

, where is defined by (13.37). At this point further increases in
will not allow us to find a , since the area up to time will be smaller than
, and the area after time will be negative. However, there is another solution

that bifurcates from the one we have been following. Consider decreasing from
. The area up to time is larger than , but for . Therefore

there will be a solution to the equation with
and . As we continue to decrease we eventually reach the point
when 0. At this point it is impossible to decrease further and still
find a solution with 0.
It is clear that the value is decreasing as decreases, since in-

creases in , so there is more area before crosses , and there is less negative
area after it crosses. What is not clear is that decreases. We know that
it is more negative than the value when , but we have not yet been able to
prove that it is strictly monotone. We leave that as a conjecture. This finishes our
proof and discussion.

. Consider the position as a parameter . There is a
unique pair such that items 1 and 5 hold and with . Furthermore
there is a unique pair such that items 4 and 6 hold with . This
makes item 2 hold. Now note that Assumption 13.56 implies that is monotone
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a priori.

Let Assumptions 13.53, 13.54, and 13.56 hold. If

then for
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increasing in , and is monotone decreasing in , that one is positive and the
other negative at and the converse holds at 1; therefore there is a
unique such that 3 also holds.

In this section we solve the variational problem (13.101)–(13.102) for the single-
watermark model. Fix a number . (If then the problem re-
duces to a problem without a watermark at all.) The functional is defined im-
plicitly by (13.97). Let us suppose that there is a time such that
for , and for , where is the first time that

. In each interval will satisfy an Euler equation, so will be equal
to a solution as given in §13.1. The solutions must agree at time , of course, since

is absolutely continuous. Furthermore, the Principle of Smooth Fit says that
the derivatives of the solutions must match at time also. Now in the interval

, is given by a portion of a solution to (13.33). In ,
has a different presentation, since we don’t know the starting point
But using the symmetry of (13.33) with respect to time reversal, we can consider

for a path that satisfies the initial condition 0 (this
is so that the buffer begins to build immediately after time zero when the path fol-
lows ).
We first consider what transpires when Case I, (13.110) holds. How can the

buffer exceed ? It must first reach , and also must exceed .
But if (13.110) holds, then the cheapest way of causing to exceed also
happens to make (Why?). Therefore we know that the first part of
the optimal path is , 0 . From here the path simply follows a time
shift of until reaches . Therefore we have the following result.

0
0 13 112

13 113

Now consider Case II, when (13.111) holds. Then the path must follow
the solution to (13.31), with the boundary conditions 0 , 0
where the second equality comes from Principle 13.63, the Principle of Smooth
Fit. This forces the additive constant in (13.31) to be zero. It also shows that
0; that is, there is no in this case. (We usually use the transversality condition
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to show that this constant must be zero, but we cannot use this condition in this
case since our problem does not necessarily fall under its domain of applicability.)
The final boundary condition is

Here is the defined in Lemma 13.55. Now Lemma 13.55 shows that
there is a unique such that

This means that we have found the unique solution to the variational problem of
achieving a buffer of size with minimal cost. We summarize our findings
as a theorem.

0
0

Let us now develop some asymptotics for the cost. We consider the case
, 0, and also the case , . The first case

is probably the most interesting for applications. We would like to be large so
that the control is not in effect very often. That is, if is the capacity of the buffer,
then we would like to be small.
When is large then we know that is nearly an exponential approach

to with exponent , followed by a nearly exponential departure
from . Also must be near since is small. The first question is
whether or not . If then 0. But by the monotonicity
of with respect to (and the monotonicity of with respect to ) we know
that when . Therefore the point where

must be larger than . In fact we will find a constant such
that for small,

13 114
This enables us to find , and hence and , as functions of .
Note that at the time when , by (13.59) we have

1
1

13 115
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Let Assumptions 13.53, 13.54, and 13.56 hold for the single wa-
termark model. Then

The path is given by for , by for , by for
, and by for . The constant , defined in (13.15), is the

cost of , the cheapest way of getting from to .

Now for small, is approximately given by (13.45) with replaced by .
We wish to see where . For each , is simply a magnified copy of

where 1. So set 1 and use (13.44) to obtain

at 4 13 116

This occurs at time given by (13.45) with 1

2 cosh

substituting (13.116) for yields

cosh 1
4

1
2
log 1

4 2

Nowwe know that scales as 1 , that scales as 1 , and that scales
as 1 also. This enables us to calculate the optimal path and cost as a function
of .
Now in case the preceding calculation carries through with one mod-

ification. The path has 0, and hence 0. That is, the two paths
intersect to the right of the axis of symmetry of , whereas when they
intersected to the left.
If the calculation changes a bit. The path must rise to a height

where . This incurs a cost of about log . The derivative of
is of order , so may be regarded as zero with negligible error. There is another

contribution to the cost, though: the increase in area as the path climbs to
is accompanied by a decrease in the time spend at ; this is easily seen to be of
order also. Finally, the path meets very nearly at the axis of symmetry of ,
so the area under is half the area under the symmetric hyperbolic cosine. This
suffices for determining the rate function for large, small, and .
So:

lim 0

0 0

If is large and is large, then is a hyperbolic sine that very nearly
decomposes into two exponentials. The reason for this is that approaches
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Theorem 13.60.
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Let Assumptions 13.53, 13.54, and 13.56 hold for the single wa-
termark model. Then

where is given by (13.56), is given by (13.56) with replaced by ,
and is calculated below.

for a long period of time, where is the minimal cost/area point for the model
with bit dropping in effect:
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Therefore, the path must be rising in order to meet smoothly. Also is a
hyperbolic cosine that very nearly decomposes into two exponentials. It is easy
to find the point where and meet smoothly:

1
1

13 118

where (13.118) defines and . Setting we find

This determines both and . Following the arguments of §13.4, we obtain

lim 0

Following the argument of §13.4, we obtain
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where we use

log
4 1

2 1

and (13.118) for the first two integrals in (13.119), and for the
third integral.

There is another, more geometric, way of calculating . Com-
pare the path 0 , and the path 0 .
We choose so that . Then our asymptotic cost is based on
the fact that except near the endpoints. But we can calculate the cost
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of the endpoints directly, using (13.118) or (13.58), and we can also calculate the
difference in areas between the two paths. As in (13.58), let

exp
1

1

exp
1

1

which is the symmetrically rising path that reaches at time zero. Then

0 0

0 13 120

13 121

You can calculate the limiting difference in cost using
(13.120) and (13.121).

We now show how to solve the variational problem (13.101)–(13.102) for the full
trim model. We analyze this system the same way we did the previous one. We
first consider whether we are in Case I or Case II. If we are in Case II then the
analysis goes through very much as in the previous case. We find 0, so that
there is no in the path again. We find , , and exactly as before,
but now
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since as soon as the buffer reaches it is trimmed to size . That is, the
cost of exceeding a level is higher than the previous case by exactly

1 .
Now suppose that we are in Case I. This case is considerably more complex

than before. The problem is that might go back and forth several times be-
tween zero and while is rising from to . Let denote the last time

0 for 0 , assuming that . Wemight have 0, and
we also might have . Clearly between 0 and the buffer
has no net increase. Therefore is the optimal path during this interval. Now
on [ ] the buffer experiences a net increase. Therefore the optimal path
must be of the form . On the interval [ ], defined by (13.33), where
the initial position replaces so that the Principle of Smooth Fit obtains
at .
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We finish calculating in the sameway as the previous case: find the unique
[ ] with

In principle this solves the problem. We can find analytically, but we need to
perform a numerical search for , and hence for and .
We can calculate the asymptotics of for small. As 0, the time
approaches (in an oscillatory fashion, but it approaches). This means that

the connection between and takes less and less time. Eventually, of
course, the system simply approaches one where the activity is always equal to ;
for such a system, the optimal path is clearly followed by , and the cost of
achieving any prescribed buffer level is simple to calculate—it is the same as in
the original AMS model, with replaced by .

We now examine the variational problem (13.101)–(13.102) for the dual water-
mark model. As in the previous models, we first determine whether we are in
Case I or Case II. Suppose Case II obtains. Then the optimal path is clearly
followed by , with a match at a time at a position where and join
smoothly. This time and position are calculated exactly as in the previous models.
We can easily compute asymptotics of the system for and both large,
or for large and small.
In Case I the situation is much as in the single watermarkmodel. The path

may oscillate between and while climbs from to . We let
denote the last time . Then as before we obtain on the interval
[0 ]. Then on the interval [ ] we have that follows a hyperbolic path

defined by (13.33), where the initial position replaces so that the
Principle of Smooth Fit obtains at . We then find the unique place and time
so that and match smoothly, each making the appropriate buffer size. The
details are almost exactly the same as in the previous cases.
We see that as , the two watermark case approaches the single water-

mark case, with remaining at during the time climbs from to .
The time approaches , and so the time when the intermediate path obtains
shrinks to zero, as does its contribution to the buffer and to the cost. The details
are quite similar to the previous cases, so we simply state some results, whose
proofs follow identically to the proofs of the analogous results for the other two
bit dropping models.
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Theorem 13.62.

B

The Principle of Smooth Fit.

Principle 13.63: .

Proof skeleton

Let Assumptions 13.53, 13.54, and 13.56 hold. For ,
the cost function has the following form.

Case I

Case II
The constant is defined in (13.15).

An ex-
tremal path for a time-homogeneous single-queue variational problem must have
a continuous first derivative whenever it is away from boundaries.

The paths in Theorem 13.62 are defined by the following equations.

is the last timeCase I:

Case II: the same as Case I, with 0. This means 0 .

We now explainwhywe expect solutions to variational problems arising in queues
to have continuous first derivatives when the path is away from any boundaries.
We have already seen how useful this can be in solving these variational problems.
Note that extremal paths in general might have arbitrarily bad behavior (see, e.g.,
Young [Yo]). The principle depends heavily on the type of question we ask—we
must be asking about a single queue to be sure it holds. The principle must be
checked in any particular case, so we just provide a skeleton of a proof. We do not
define “boundaries,” but typically we mean a place where the jump rates are
discontinuous in . For our bit dropping models, then, there are no boundaries,
even thought the equation for the buffer has discontinuities. We already saw in
Chapter 11 that an optimal path can have discontinuous derivatives at a boundary
(in that case at the point 0, where is the queue occupancy). In Chapters 15
and 16 we give more applications where some optimal paths have discontinuous
first derivatives at boundaries.

The Principle of Smooth Fit for Queuing Problems

. This proposition is based on a scaling property of the rate func-
tion and of the queue size. Suppose that there is a discontinuity in at
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0, where is the optimal path for a single-queue variational problem. Then
for a small number we consider a new path that is equal to except on
the interval where it is a linear interpolation.
First we claim that there are constants and such that for any ,
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This is because is nearly equal to 0 for , and
we know that constant-coefficient processes have minimal cost for straight line
paths. In detail, Lemma 5.13 states that is strictly convex in , uniformly
over in any finite neighborhood. Furthermore, Exercise 5.34 shows that
is jointly continuous in and . Now assume that is twice continuously differ-
entiable in both arguments, and that and are continuous on 0 and
on 0 with limits as 0 denoted and . Then

0 0

0

with a similar estimate holding for the integral from zero to . Therefore

0 0

2 0
2

by the uniform convexity of with respect to . But it is easy to see that the
last expression is within of .
Now we claim that typically the difference in queue size between that caused

by the path and that caused by the path is of order . This is because
typically the queue is a function of the path that is either an integral or something
very much like an integral, and the two paths and differ by order over a
time interval of length .
Since the queue is changed by order when we change the path from to ,

the implicit function theorem indicates that as long as the queue changes with a
change in , we can alter the path over a time of order so that the queue
caused by will be exactly the same as the queue caused by the path . This
might be done, for example, by keeping the endpoints of the path on
fixed, but lengthening or shrinking the interval by a small amount. This alteration
will make a change in of order . Alternatively, if 0 at 0
(where represents the queue size), then the difference in queue size between the
two paths and is very small [smaller than ], so changing the path
at another time by simply stretching time by less than will make the two
queues equal with negligible change in cost. This method of changing the queue
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is valid only if the buffer is not locally constrained, but is only constrained at the
end time or some other time far from zero.
Therefore we have seen that if is an optimal path for a variational problem as-

sociatedwith a single queue, then it cannot have a discontinuity in its derivative, or
else we could find a path with lower cost that still satisfies the queueing constraint.
(The reason we restrict this to a single queue is that we use the implicit function
theorem, which in this context is easier to verify for one-dimensional problems
than higher dimensional problems.)

We now specialize the Principle of Smooth Fit 13.63 for the single watermark
model. The interested reader can supply a complete proof, or consider the other
models using similar reasoning. We wish to show that a minimal cost path
that causes has a continuous first derivative. Obviously any
path that is extremal must satisfy the Euler equation when . The
only point is to show that the first derivative must be smooth when .
Let be the first time that . There are two cases: ,
and [these cases exactly correspond to Case I and Case II with

]. In the first case the buffer holds at while increases. In the
second case 0. In the second case the reasoning outlined in the “proof”
of the Principle of Smooth Fit holds. In the first case it is clear that the variational
problem does not notice the behavior of , since the path simply has to
reach in order to make the buffer increase farther than . Therefore the so-
lution to the variational problem, in either case, has a continuous first derivative.

Data packets have different requirements than voice packets. Generally speaking,
data packets are insensitive to delays, but very sensitive to errors. This means
that bit dropping is not a good control scheme for data. However, since data can
be buffered at the source with no ill effect, we can try “throttling” the sources to
reduce network congestion. Throttling can mean different things, but all of them
involve slowing a source’s transmission. There are many schemes for throttling,
including “leaky bucket,” rate feedback such as Jacobson [Jac] or [JRC], Mitra et
al.’s proposal [MRS], etc. We look at a simplifiedmodel based on some heuristics.
The idea behind leaky bucket, at least according to its inventor John Turner, is

to “enforce the mean.” That is, if every source transmits at its mean rate then
obviously there can be no buildup in the queue. One way of enforcing the mean is
to have sources’ transmissions monitored, and as network congestion increases,
hold the sources to their mean level of transmission over shorter and shorter time
scales. This makes it more unlikely that an overflow will occur. We model this
heuristic as follows. We let the rate at which individual sources turn off be a func-
tion of ; specifically, we make
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where is an increasing function of . Then the larger the offered traffic rate
is, the more quickly individual sources turn off. Now in order to model
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of any surge, we make depend on the same way:
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This both models the propensity of a throttled source to turn on more quickly than
usual, because it still has something to send, and it also models the “enforced
mean” heuristic well by not changing the average amount of traffic that a source
attempts to send. The model is certainly arguable—but it is simple to analyze, and
may be a step towards analyzing more detailed and well-founded models.
The analysis of this model of throttling is very simple, given our results of

§13.1. Here are some of the results.
1. The frequency of non-empty buffer is unchanged, since

log
1

log
1

13 126

2. For small values of ,

exp 13 127

That is, even though the probability of the buffer being non-empty doesn’t
change (asymptotically), the probability that the buffer exceeds any level
decreases by a considerable amount.

3. Large buffers again occur by having the process hold at a constant value
. The value minimizes the quantity

1
13 128

assuming that there is a unique minimum. The value of is then about
, where is the minimum in the expression above.

We can make a similar heuristic calculation for a caricature of a bit-dropping
model. Wemodel the fact that packets are shorter by multiplying by , leav-
ing fixed. This makes each busy period for each source smaller by an amount
equal on average to , which is in some sense equivalent to removing a fraction
of each packet. We assume that 1. Now we easily find the following.
1. The frequency of non-empty buffer is changed. The new rate is given by

log
1

log 13 129

2. For small values of we have

exp 13 130

where has the same form as but with replacing everywhere.
It is easy to see that . That is, the frequency of non-empty buffer
decreases, and the buffer is smaller during busy periods as well.
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Our previous model of bit dropping had instead of , and had a step
function from one to .

Compare the results of this model to the previous one for large
, where you might expect both models to be accurate and to agree.

The simple source model has obvious deficiencies, especially for modeling mul-
tiple classes of sources. One potential benefit of packet traffic is its universality:
all communication, whether of voice, data, video, multimedia or types not yet de-
veloped, can be reduced to moving packets of bits. Different types of sources can
be expected to have different characteristics, including different requirements or
sensitivities to delay and errors.
The simplest system with multiple classes of sources has each source given by

a simple on/off process, where the different classes of sources can have differ-
ent values of , , and , the activity. This falls within our general model of
sources if we assign a dimension to each source, as follows. Let be the fraction
of sources that are in class , 1 , and is the total number of classes of
sources; that is,

1
(the number of class sources) 13 131

where as usual is the total number of sources. The state vector is

1
(the number of active class sources at time t)

The traffic generated at time is given by , where recall that is the
vector of activities. The scaled buffer content satisfies

if 0 or ;
0 otherwise.

The equilibrium point of the system is

13 132

We assume that
13 133

so that the statistics of the buffer are nontrivial. The path is given by

13 134
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The rate function for the system is defined by

sup 1 1

It is easy to see that , where

log
4

2
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The reason that the -function splits into a sum of independent pieces is that the
process is a sum of independent pieces: each dimension is (statistically) indepen-
dent of the others. This enables us to piece together the solution of various prob-
lems from a number of simple parts.

This split enables us to prove the large deviations principle for from the
corresponding large deviations principle for the components of . The lower
bound follows directly from the lower bound for the components. Using the sim-
ple inequality for

max
we have for any and 0

sup sup

The upper bound is almost as easy. Recall the definition

: 0

Define the closed set

:

Then define as in Chapter 5 as the piecewise linear interpolation of .
Then for each and 0, the large deviations upper bound for the components

of gives

lim sup
1

log 13 136
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The heuristic derivation of the large deviations upper bound also provides a com-
pact reason why the upper bound should hold for a process if it holds for the
components . Each component should satisfy

1

Therefore
1

also, which is the essential step in proving the upper bound. This is very nearly
the reasoning we use in our proof. See also the note following Equation (13.142)
below.

Divide into equal components. Then implies that there
is a set of with and such that

13 137

There are only a finite number of possible to choose from. Recall Lemma 5.57,
which states that and are close with rate function tending to as .
Hence (13.136) and (13.137) imply that

lim sup
1
log 2 13 138

That is, (5.70) holds with slightly different constants. This is the key equation
used in proving Theorem 5.64, the large deviations upper bound. That is, the up-
per bound holds for our process .

We begin with the question of how often the buffer becomes non-empty; equiva-
lently, we try to find the cheapest path from to the hyperplane . The
variational problem to be solved is

inf

: 0

Either by observing the form of as the sum of , or by taking special variations
in each component separately, we see that the Euler equation for each class is the
same as before except that 1 is replaced by . Or even more
simply, if the point is given, then we know that the cheapest way to get there
is for to follow the level crossing solution given before as the reversed path
from to . In any case, we find that

exp
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and the associated cost is given by

log

By making the usual time shift we may take 0 so that the path crosses the
hyperplane at time zero. The only question is to find the place on the hyperplane
where the crossing takes place.
Let us minimize using a Lagrange multiplier on the constraint

0 13 139

We obtain the system of equations

log
0
0

Defining exp , we obtain
0
0

so that
0 13 140

We find by the constraint (13.139):

13 141

This equation cannot be solved analytically, in general, but a moment’s inspection
shows that it is trivial to solve numerically because of the following properties:
1. The left-hand side is monotonically increasing in .
2. It is equal to at 0, and is equal to at .
To summarize, the level crossing problem is solved by recognizing that it may

be reduced to a number of one-dimensional level crossing problems. The only
thing that ties the problems together is the position on the hyperplane where the
level is crossed, and this is reduced to a one-dimensional root of a monotone func-
tion. The final answer is

log

0 log
0

0 log
0

13 142
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where 0 is given by (13.140) with the solution of (13.141).

We may calculate the statistics of the buffer in a manner very similar to the level
crossing problem. We reduce the problem to a number of one-dimensional pre-
viously solved problems, then attempt to fit them together. We make use of the
Principle of Smooth Fit 13.63 in the calculation of various asymptotics.
We now write the variational problem and its solution, insofar as we are able.

Given a level , we introduce a Lagrange multiplier and examine stationary
points of the functional

0

Replacing with 0 in the second integral, we are led to examine the sta-
tionary points of the functional

0

It should not be too surprising that the level crossing problem reduces to a one di-
mensional problem. Consider the equivalent problem in the setting of i.i.d. random
variables. Suppose we have a collection of random variables with distribution
, random variables with distribution , up to random variables with

distribution . The question is now, What is the probability that the sum of all
these random variables exceeds a level , where we are writing

? There are at least two ways to approach this problem. Using
Chernoff’s Theorem, we could estimate the probability that the type random vari-
ables achieve a mean of at least , and then compute the cheapest set of levels
satisfying , where “cheap” means the sum of the rates .
This is equivalent to the problem of finding where the path crosses the hy-
perplane . However, there is another point of view. We could simply
examine the proof of Chernoff’s Theorem for independent random variables, and
come up with a single so that

That is, instead of taking a different in each rate function , the minimum cost
will occur when all the various are the same. This is the same idea that allowed
us to prove that the various presentations of the rate function for the finite levels
process are the same in Chapter 8.
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Again the variational problem has split into independent problems. We have the
solution in the form

cosh

The only question here is to find 0 and . Once we do, we are able
to calculate all the parameters of since then we have reduced the problem
to independent one-dimensional problems. (There is, of course, the problem of
calculating , but we were unable to solve this except numerically in the one-
dimensional case as well.) To find , we use the Principle of Smooth Fit 13.63.
After the path follows . Also, from to zero we have

. Therefore we must have 0 . But this can hap-
pen only if 0 . That is, the minimizing path must exit the region

at the same point it came in. [This is not to say that different buffer
sizes might not have different places where they hit the hyperplane, only that
for a given , 0 .] Furthermore, given a value for 0 , we have

is given by (13.142). This is as far as we are able to get with the
solution of the general variational problem; we are not able to give a closed form
solution for 0 and must leave it for a numerical search. However, we can again
find the asymptotics for large and small , to which we now proceed.

The small asymptotics are computed in very much the same way as the simple
source model. The only new item is the place where the optimal path crosses the
hyperplane. We begin with this calculation.

Consider the point 0 defined by the level crossing problem (13.140).
Since is an extremal, the rate function of paths that reach any point in a small
neighborhood of on the hyperplane will be close to to within .
Furthermore, for any 0 small enough there is a 0 such that all paths
ending outside a -neighborhood of will have a cost . These con-
siderations lead us to the following conclusions. For the -buffer path with

0 , 0 :
1. lim 0 .

2. 0 , since for an optimal path.

Hence we may approximate 0 by . Furthermore, we may approximate
by the constant-coefficient -function as in the simple source case; that

is, we replace each by the constant , and each by the
constant . We find that the minimal cost path satisfies

constant for each
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We may write this explicitly as

4

Following the arguments leading to (13.45), we obtain

0
2

cosh 13 143

The transversality condition gives us 0, and the Principle of Smooth
Fit 13.63 give us 0 for every . [Why? The paths leading to and from
are time reversals of each other, so the only way could match both is to

come back to the same place it started from.] Therefore we can calculate and
as follows: 2 , since 0 . Furthermore,

cosh 13 144

since 0 . So we obtain

2
13 145

making the constant the only unknown. Let us define . Then we
have that each is monotone increasing from zero to as does the same. If
we choose small enough, then, since for each , we have 0
from (13.144) and the arithmetic-geometric mean inequality. Furthermore, as
becomes large, eventually all the will be positive. So there is indeed a unique
value of that makes 0, and this enables us to calculate , , and
via (13.145), (13.144), and (13.143).
Once we have found (numerically), we proceed as follows. Find by

0

Since , we obtain 1 , so that, for small ,

13 146

Show that the error term in due to the approximation of
by a constant-coefficient process is . You may wish to show that

the difference in jump rates is by scaling space so that the constant-
coefficient path does not depend on . In this scaling the original process has
linear rates with slopes . Also find out how far apart the initial points are
in this scaling.

Give explicit expressions for the constants in (13.146).
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The large asymptotics are again calculated in a very similar fashion to the cal-
culations for the simple source model. The way a large buffer is achieved is for
the path to be nearly constant over a long period of time, and our main ob-
ject is to calculate this constant. The cost per unit time for holding at a point
is

cost/unit time 0 13 147

and the buffer fill rate per unit time while holding at is

buffer/unit time 13 148

We maximize the ratio cost/unit buffer by differentiating with respect to for
each . We obtain the equation

cost
unit buffer

1 2
13 149

for each . This may be solved iteratively by many methods. One is to start the
iteration at , calculate the cost per unit buffer [by dividing (13.147) over
(13.148)] for this value of , then update each by equation (13.149). In any
case, we can numerically find the value of , the that minimizes cost per unit
buffer, and hence of the linear term in the cost function cost/unit buffer
.
To find a more accurate approximation to we need to find the most prob-

able path from to . We again let represent the point where the critical path
intersects the hyperplane. We have the cost of the critical path from to is given
by (13.142). The Euler equations for the remainder of the path are

1 13 150

where is a Lagrange multiplier and the are constants. The transversality con-
dition is 0 and the value of is the cost/unit buffer when holding at .
Now to find consider Equation (13.150) at the point , where 0:

0

We are then able to write in terms of the only remaining unknown, , as
follows:

13 151
where we use the positive solution of (13.150) for in terms of in the first in-
tegral of (13.151), and the negative solution for the second. The minimum of this



∑

∗

∞

386

i
i i i

, ( )

ρ
( )/ ρ

13.9. End Notes

' ∈ {〈' '〉 = }

'

→ ∞ ≈

'

y y a C I B B

D

B I B B f

z
B

Chapter 13. THE ANICK-MITRA-SONDHI MODEL

cost over gives the asymptotic expression for for large.
This completes our discussion of the solution of the variational problem for the
multiple-class model.

We wish to point out thatflow control schemes for the multiple class model have
exactly the same efficacy as they did in the simple source case. That is, cutoff flow
control helps only when it keeps the system from reaching the level , and then
it has a calculable effect; rate-changing schemes have the same sort of effect on
level crossing an buffer sizes, etc.

As the chapter’s title implies, the class of models we investigated was proposed
and largely solved by Anick, Mitra, and Sondhi in their seminal work [AMS]. The
approach presented in this chapter was initiated by us in [We2]. The present ex-
position largely follows that work, with many corrections and amplifications. The
subject has been studied extensively of late by many investigators through a va-
riety of methods. See, for example, [Mo1, EM1, EM2, EMS, KuM, BoD].

We glossed over the point that there are several time scales in a good model of
traffic. We examined only the time scale of packet generation and transmission.
We explicitly modeled the time scale of bits as fluid, taking a limit that might bet-
ter be left unevaluated. We also assumed that each source was connected to the
system forever, and was always in the same sort of activity mode. A better model
would either have sources enter and leave the system, or would have collections
of states with extremely long holding times within the collection; some could rep-
resent being quiescent, or disconnected, while others could represent various ac-
tivity levels. David Tse [Tse] addressed this problem using large deviations in his
Ph.D. dissertation.

The development of “effective bandwidth” theory has been a major effort in re-
cent years. In some cases it can be viewed as a scaling property of the large buffer
asymptotics for the multiple source model. Specifically, there are constants
such that as , (see (13.131). Effective bandwidths are
used in admission control and system design. (For another innovative approach
to admission control, see [CKW].) But since we did not contribute to this theory,
we did not develop it here. It was initiated in [Hu1] for the zero-buffer case, and
by [GH] and [GAN] for the large buffer case, and has also been investigated by
[CW, KWC, EM3, KeF, Wh2], and many others.

The models of packet traffic we considered are the beginning of many directions
of current research, and the interested student could probably make a contribution
just by following some of the directions alluded to above. There are other sorts of
models that can be analyzed without undue difficulty. Whenever the underlying
source model is reversible then the level crossing problem, at least, can be solved
since the most probable path to any given point is the time reversal of from that
point. The small- and large- asymptotics should then be solvable, if not more.
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Aloha

multiple-access channel

14.1. The I.D. Model and Heuristics

Shouting down a pipe is a good method of getting your message across, as long
as you’re the only one shouting. This is the main advantage and disadvantage of
a : everybody has to listen to only one place (their hole in
the pipe), but if more than one person attempts to transmit at the same time, the
message is garbled. The problem of communication is reduced to either coordina-
tion among the transmitters (so that messages do not collide), recovery procedures
for lost messages, or some combination of the two.

“Aloha” is the name of Abramson’s invention [Ab], the first and simplest proto-
col for coordination and error recovery. He assumed that transmitters could deter-
mine when a message was garbled by colliding with another message. Here’s the
protocol in a nutshell: if your transmission is garbled, then wait a random amount
of time and try again. That’s it. If everyone is choosing statistically independent
random amounts of waiting time, then after colliding with someone, you’re quite
likely not to collide with him at your next try.

We begin with a nonstandard model of Aloha, but one that fits easily into the
framework of the theory we developed in Chapter 8. We will compare this model
to two more standard ones in §14.3 and §14.6.

There are three novelties in this chapter. One, our model of “instantaneous de-
tection” Aloha, is new. Second, our analysis is new—both the heuristic derivation
of the capacity of the system, and our large deviations analysis via the finite levels
model. Third, our analysis of Gaver and Fayolle’s model in §14.6 is both new and
is the first rigorous analysis of the paradox that model offers.

Suppose that packets arrive in a Poisson stream, and have unit length. Suppose
further that collisions are detected instantly. This means that when a packet ar-
rives at the channel (either a fresh arrival or a retransmission) and the channel is
already occupied, then the arriving packet and the occupying packet both instantly
abandon the channel and join the retry queue. We call this the i.d. model (i.d. =
instantaneous detection).

We approximate this system by a finite levels model. The distribution of packet
lengths is not Markovian—it is a point mass at one. We approximate this distri-
bution by a convolution (sum of independent random variables) of exponential
distributions with mean 1 each. We encode this into a finite levels model as
follows. We let be the state of the system, where 0 is the number of
packets in the retry queue (not including the transmitting packet if any). The level
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0 encodes the “service stage” of the transmitting packet. An empty
channel corresponds to 0. When a packet first arrives at the channel we set

1. After the first exponential clock goes off we increment to 2. We
continue to increment until either reaches , or another packet arrives at the
channel. If another packet arrives before the first leaves then we set 0 (the
channel is again empty) as both packets go to the retry queue. If reaches ,
then when the last exponential clock goes off the packet leaves the system, so that

decreases by one and is set to zero. Each packet in the retry queue retrans-
mits (independently) with rate . The transition structure is sketched in the upper
diagram of Figure 14.1.

Figure 14.1. Transitions of the i.d. model. 1 is used for brevity for
the lower figure (described below).

There are two natural presentations of the i.d. model. One includes the packet in
service (if any) in , the other does not. Our definition of the system above does
not count the packet in service, only those in the retry queue. The upper figure
corresponds to that definition. It has jump directions (corresponding to a new
arrival with rate ) with 0 0, and 2 for 1 . The lower
figure (which includes the transmitting packet in the state ) has 1 for
all . Schematically, the two presentations differ only in that the bottom level is
shifted with respect to the upper levels by one unit. The jump rates have a corre-
sponding shift: the jump rate , corresponding to retries, is equal to in one
model and is equal to 1 in the other. We would like to be able to ignore the
subtraction of one from the rate (that is, have the rate equal to in both models)
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in order to have simpler formulas and models. It is easy to show that asymptoti-
cally as 0, the formulas do not see the difference. Both the path and
the large deviations rate function are indifferent to this change. This is a
general scaling property of finite levels large deviations models, as you can prove
for yourself.

For each this finite levels model is an approximation to the true i.d. model.
We show in §14.5 that this approximation makes sense as . Until then
we will be cavalier about allowing to approach , deferring all justification.

The first item of business, as usual, is to define and analyze . We need to
be able to calculate the drift of the finite levels model as . We perform
the scaling required by Chapter 8. We let have jump sizes 1 and
scale time by so that the jump rates are . We may now calculate

by evaluating the local drift of the process. Let be the local
equilibrium probability of level , given that

. Here are the equations satisfied by .
(A) 1

0 1 0
(B) 1 0

(C) 1.

Now fix 1 and define
1

14 1

1 orby (A):

1 1 0 or 0
1

by (B):

1
1 1

2 1
1

1by (C):

That is,
1

2 1
14 2

where 1 by Equation (14.1). Now by (8.6),

2 1
14 3

We are interested in the drift as . We have

lim 1
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The drift of (the value of as given in (14.4)) is plotted in Fig-
ure 14.2.

Figure 14.2. The drift of i.d. Aloha, 0 13.

When is the minimum value of drift negative? When is

min
2 1

0 ?

We maximize the function , finding the maximum of numerically to
be 0.23196 at 0 76804 1 max . Hence the largest value of for
which min 0 is 0 23196 . At this value we need

0 53608

When 0 23196 there are two roots of the drift, labeled and in
Figure 14.2. The smaller root, , is “stable,” while is “unstable.” This means
that

lim whenever 0 [0

lim whenever 0

The behavior of ( in our standard notation, where recall 1 ) over
any finite interval of time is therefore most likely determined by Kurtz’s Theorem
as 1 0: if 0 then most likely will approach . The set
[0 is sometimes called the “basin of attraction” of . The long time behav-
ior of is basically the study of the time to exit the basin of attraction, and it
should be intuitively clear that this is an exit problem almost exactly of the form
studied in Chapter 6.
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If you have studied Aloha protocols before you might not have found the preced-
ing derivation intuitive, although we hope you’ll agree that it is straightforward
from the theory we developed in Chapter 8. We now present an alternative deriva-
tion of the drift of i.d. Aloha that is heuristic, but is along the lines of more familiar
derivations for other models. Perhaps the complexity and length of this derivation
will convince you to go the large deviations way, which is shorter and rigorous!
(If you are already converted, you may want to skip directly to §14.2.) We will
use similar reasoning in deriving the drift of some other models later, so neophytes
to the field might find the arguments here easier to read if they first examine the
arguments of §14.2.

Let us assume that there is a Poisson ( ) arrival process, and that retries have
rate , with the retry queue having a current occupancy 0. Recall that trans-
missions take one unit of time. We need to calculate the probability that a packet
(new arrival, or from the retry queue) attempting transmission suffers no collision.
Suppose that a packet attempts transmission at time zero. Then it may collide im-
mediately, or it may collide during the next unit of time, or it may be successful.
We will see below (14.11) that the probability that it does not collide immediately
is

1
2 exp

The probability that it does not collide during the next unit of time, given that it
did not collide on first attempt, is exp . So, the net transmission rate
is the rate of attempting transmission times the probability of success

exp
2 exp

This yields a drift

drift
exp

2 exp
14 5

which agrees with our previous calculation (14.4).
Here is how to calculate the probability that the channel is free when a packet

arrives [the missing ingredient in obtaining (14.5)]. We consider a packet that ar-
rives at time zero. Let denote the probability that the channel is free at this time;
this is the probability that the packet does not immediately collide. Now in steady
state, this is also the probability that the channel is free at time 1 . The proba-
bility that the channel is free at time zero is equal to the probability that the channel
is free at time 1 times the probability that there are an even number of arrivals
in 1 0 , plus the probability that the channel is not free at time 1 times the
probability that the arriving packets in 1 0 cancel each other out. This last
probability can be broken down into the probability that there are an odd number
of arrivals in 1 0 and the first arrival collides with the packet that existed at
time 1 , plus the probability that there are an even number of arrivals and the
first arrival takes place after the packet that existed at time 1 already departed.
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We calculate these last probabilities by considering the probability that the
packet that existed at time 1 arrived at time 1 and calculating the
chances that it would collide with the first of subsequent arrivals, for every

. To find the probability that the packet arrived at time 1 , consider
that there must have been no arrivals in 1 1 , which has probability
exp . That is, for each 0 1 , the probability that the packet ar-
rived in 1 1 is proportional to exp where .
Normalizing this probability to one we see that the probability density function is

exp
1 exp

14 6

Now the probability that subsequent arrivals all occur after the packet that ex-
isted at time 1 has departed is the probability that these packets arrived in time

0 , which is clearly . That is,

all arrivals miss the original packet
exp

1 exp

1
1

!
1

!

The term within brackets may be “simplified” as follows:

1
! !

14 7

Therefore, the probability that the channel is free at time zero, given that it was
occupied at time 1 , is

even

!
1 !

1
!

odd !
1

!
1 ! !

14 8

Now interchange the sums on and , and note that

even
1

1
2

odd
1

2

odd !
sinh
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We obtain that (14.8) above is equal to

sinh
1

1
2 1

14 9

Therefore,

the channel is free at zero
the channel is free at 1

even !
1

1
2 1

14 10

Now the sum in (14.10) is equal to

even !
cosh

1
2

1

Solving (14.10) for we obtain

1
2

14 11

This finishes our derivation of (14.5). The probability that a packet does not
collide on arrival has the properties

1 as 0 and
1
2

as 14 12

which are to be expected.
Give arguments that are not based on calculations why (14.12)

must hold.

Not only is the heuristic justification we just developed less straightforward
than the analysis based on a finite levels model, but it is harder to make rigor-
ous [for example, we shall see later that there is no steady-state distribution for
the process ]. In fact, when we were developing this model, we first derived
the drift using the finite levels model, and only later used this more standard ar-
gument.
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14.2. Related Models

λ

/ν

( , )
ν

( ) ( (λ ν)).

(λ ν) ( (λ ν))

( ) ( )

λ (λ ν) ( (λ ν)). ( . )

We now describe two other models of Aloha. These models are standard, and our
description and analysis of them contains no novelties. They are both outside the
scope of the theory developed in this book. We found several compelling reasons
for including them, though. The first is that they are standard, and we wished to
compare the theoretical performance of the i.d. model to them. The second is to
show people who are not familiar with Aloha exactly how our model differs from
standard ones. The third reason is that it is easier to analyze slotted Aloha than it
is to analyze i.d. Aloha; therefore we include the analysis to show how properties
of Aloha systems might be expected to respond to changes in various parameters.

The first standard model is called continuous-time Aloha. In this model packets
arrive according to a Poisson process with rate , and have unit length. When-
ever a packet collides with another, by simultaneously occupying the channel,
the packet is deemed to have been garbled, and when it is finished transmitting
(one unit of time after it arrived) it joins the retry queue. Unlike the i.d. model,
in continuous-time Aloha packets hold the channel for a unit of time, whether or
not they are involved in collisions. Packets may overlap for only a small fraction
of their existence and still interfere destructively with each other. It is difficult to
give a compact Markovian description of this process, since we need to remember
the arrival times for all packets in the channel. This is why we cannot analyze this
model using our theory.

The second standard model is called slotted Aloha. It operates in discrete time.
We suppose that time is divided into integer lengths, and that packets that arrive
in the middle of an interval wait until the next integer time, and then attempt to
seize the channel. If exactly one packet seizes the channel then it is transmitted
successfully. If more than one packet seizes the channel then all are garbled, and at
the end of the slot are sent back to the waiting room. Packets wait a geometrically
distributed number of slots before attempting to retransmit, with the mean number
of slots given by 1 .

We now give heuristic analyses of the drifts of both continuous-time Aloha and
slotted Aloha along the lines of the analysis of the previous section. We start with
continuous-time Aloha. Recall that each packet takes a unit of time to transmit.
A transmission that begins at time will be successful only if there are no other
arrivals to the channel, either from fresh transmissions or retransmissions, during
the interval 1 1 . Let us suppose that there are packets in the retry
queue, each attempting to retransmit with rate . Then the probability that there
are no arrivals to the channel in a time interval of length 2 is

success exp 2

Hence, for each , the rate of successful transmission is the arrival rate (new and
retries) to the channel times the success probability, exp 2 .
Therefore the net drift of (namely ) is

drift rate in rate out exp 2 14 13
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In order for the drift to be negative we must have

exp 2 14 14

The maximum of the right-hand side of (14.14) occurs when 1 2, and
there it achieves a value 1 2 . Therefore we may solve (14.14) with equality for
every 1 2 . Just as in the i.d. case discussed in §14.1 there are two solu-
tions, , whenever the minimal value of the drift is negative [i.e., whenever

1 2 ]. The drift of is negative for . Therefore is
a stable equilibrium point of the system, and is an unstable equilibrium point.
The point tells us how many packets we expect to be backlogged, since

tends to stay near the point .

Figure 14.4. Drifts of the various Aloha models for 0 13. The roots
are not labeled because they are nearly indistinguishable on this scale.

Find an approximation for as a function of for small values
of . What can you say about for small values of ? Hint: you might wish to
use Newton’s method for finding the root of the drift near 0, starting from the
known value of the drift at 0. For large values of ( as 0) you
might wish to use the approximation exp 2 as the first step in a repeated
substitution into the expression .

Slotted Aloha has a similar heuristic calculation, with slightly different results.
Suppose that the exogenous arrival process in each slot (slot = discrete unit of
time) is Poisson with parameter , and that the retries occur at geometrically dis-
tributed times with mean 1 . Suppose further that there are packets in the retry
queue. Then, as 0 and , the number of arrivals at the channel at each
slot has approximately a Poisson distribution. Therefore the net departure
rate is exp (this is the frequency of slots containing exactly
one packet), so the drift of is

drift exp 14 15

There will be a region where the drift is negative for every 1 .
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Except for the factor of 2 in the exponent, the analysis and commentary for this
case is exactly the same as for the previous one. We see that slotted Aloha is much
more stable then continuous-time Aloha; it has twice the ultimate capacity (1
as opposed to 1 2 ), and a stronger “restoring force” to the point for a given
exogenous arrival rate .

We can easily see that slotted Aloha where the slot length is equal to the packet
length will have less contention than continuous-time Aloha. Imagine a set of ar-
rival times marked on the real line, with all retransmissions also marked. Now
round each packet’s starting time to the nearest integer multiple of a packet length.
The “rounded” system is slotted Aloha. The main point to note is that any pack-
ets that collide in the slotted scheme would have collided in the unslotted scheme,
since by definition their starting points are within one unit of each other. However,
some collisions may be eliminated, as in Figure 14.6. (Actually, of course, packet
arrival times are not rounded to the nearest integer, but are truncated. However, this
is equivalent to rounding to the nearest [integer + 1/2], so our conclusion holds.)

Figure 14.6. Continuous-time Aloha has more collisions than slotted Aloha.

Furthermore, by reducing collisions, some retransmissions will not occur, fur-
ther reducing the number of collisions. Hence slotted Aloha has, pathwise, greater
carrying capacity than continuous-time Aloha. The only thing wrong with this dis-
cussion is that the slots must, in practice, be a bit larger than the packets, to allow
for transmission delays and other sources of jitter. This reduces the capacity by a
fixed amount. Also, variable-length packets can be supported more easily under
continuous-time Aloha, since a slot large enough for long packets might be waste-
ful for short ones.
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Proposition 14.7.

Exercise 14.8.

Corollary 14.9.
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We now compare the three models in terms of their most likely performance. It is
easy to see that the models have similar behavior: the drift is positive for 0,
achieves at most one local minimum, and approaches as . The drifts
are also monotone decreasing to their minima, and are monotone increasing there-
after. Therefore there are at most two values of that make the drift equal to zero.
These points, denoted and when they exist, are the only possible stable points
of .

Our main result in comparing the three models is the following

0 0

Prove Proposition 14.7. [It’s just algebra with Equations (14.4),
(14.13), and (14.15).]

The evolution of under all three models is clear. If 0 0 then
approaches in a monotone fashion. If 0 then

as , and as . Therefore if 0 we know
from Kurtz’s Theorem that most likely approaches as increases, at least
for a while. Eventually, though, just by random fluctuations will exceed .
After that we expect to continue to increase forever. Our analysis of Chap-
ter 6 does not apply to this process without modification, though, since the escape
from the region occurs at a point where drift = 0. This contradicts As-
sumption 6.4, and therefore invalidates some of the analysis.

We nevertheless expect that the behavior of Aloha is the following. For a long
time, on the exponential order of , the process will stay near . Then

will make an excursion above and will most likely increase forever-
more. Our job as large deviationists is to calculate for the various models, and
see how it depends on parameters such as .
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Our large deviations results on the i.d. model are incomplete, in that we have not
yet proved every property we’d like. Nevertheless we include our partial results,
in the hope that the reader will find some insight, and will forgive us for not fin-
ishing them.

We begin with a derivation of a rigorous upper bound on the rate function re-
lated to the length of time the system remains in the region , namely

inf

inf

inf

: 0 [0 ] 0

14 16

Establish (14.16). Hints: show monotone paths suffice so that
zero is never reached. Now establish the hypotheses and follow the path of §C.3.

Recall from Theorem 8.19 that the local rate function satisfies

inf inf log

14 17

: 0 1

: 0 0

(We can in principle calculate such a rate function for each fixed , and then
let lim if this limit exists.) We may obtain an upper bound on
by simply defining a change of measure with its associated invariant measure

in such a way that the resulting drift is positive. We actually need to define
a sequence of changes of measure, one for each , and calculate the limit (if it
exists) as of the resulting rate. This will give us a value

lim

which then provides the bound

lim 14 18
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We propose the following change of measure . Each jump rate remains un-
changed. The two jump rates out of level zero, 0 and 0 , change to 0 and

0 . The remaining jump rates and , 1 , change to 1
and 1 , for all . That is, we have four parameters 0 0 1 1 that
define our change of measure. For each we choose the four that min-
imize the expression

14 19

over 0. This minimization is performed numerically. Specifically we perform
the following steps.

1. Given 0 0 1 1 , compute the invariant distribution for
0 . This is given in (14.1) and (14.2).

2. Compute the drift . This is given in (14.3), and the limit as is given
in (14.4).

3. Compute , the bound on the cost, given by expression (14.17) with the
change of measure and invariant measure given in item 1.

4. Minimize (14.19) numerically over the set of positive parameters 0 , 0 ,
1 , 1 . This minimization can be done even more easily by writing

0 0
1 0

and minimizing over the triple . This reduces the problem from
four dimensions to three, and also has the advantage that is monotone in-
creasing in , so it is simple to find values of the parameters with 0.

5. Numerically integrate (14.19) from to to obtain a bound on .

We present our numerical findings in Figure 14.11. This table also contains a
numerical evaluation of the rate for slotted Aloha (this calculation is outlined in
§14.7). We see that i.d. Aloha has a smaller rate than slotted Aloha for every
value of . This can be taken as a numerical proof that not only does slotted Aloha
have a stronger stabilizing drift, but its deviations take much longer to occur than
those of the i.d. model.
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Figure 14.11. Values of for various Aloha models and parameters. The
“Poisson” slotted model is the one we have discussed so far; the others will
be developed in §14.7.

There are two items that need justification, and several that need more analysis.
One glaring deficiency is our blithe reduction of the estimation of the stability of
i.d. Aloha to the calculation of lim . This is an interchange of limits that
needs to be justified: we have estimated

lim lim log 14 20

when what we want is

lim lim log 14 21

where is the time when escapes the region . Furthermore, we
have assumed that the Freidlin-Wentzell theory applies, so that the calculation of

lim lim log reduces to solving a variational problem. The
problem here is that the drift of is equal to zero at ; that is, Assump-
tion 6.4 of Chapter 6 is not satisfied (and neither is Assumption 6.5). This means
that, in order to be completely rigorous, we would have to prove anew some as-
pects of the Freidlin-Wentzell theory.

There are a few other points worth mentioning. We claimed to have only an up-
per bound on , yet we conjecture that this bound is sharp, in a strong sense: we
believe that the optimal change of measure approaches the four-parameter family

0 0 1 1 as , at least in a certain sense to be defined below.
Furthermore we did not show that inf 0, though we
also believe that this is true. Finally, we did not calculate for the continuous-
time model. This last calculation is one we do not know how to do—we believe
that this is a good topic for an interested investigator.
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Most of the justifications we present in this section are incomplete. This sec-
tion, therefore, is simply a sketch of ideas and partial results that we hope will
someday be completed by us, or perhaps by you the reader.

no

A linear Poisson process (also called a Yule process) is a birth
process whose jump rate at equals .

Let be a linear Poisson process with . Then

We begin with a sketch of a proof of the justification of interchanging the limits
0 and . The proof is based on specific properties of the i.d. model.

There is general result saying that these types of limits will interchange for
other finite levels models that approach a limit as the number of levels approaches
infinity.

0

0 1

1

. Consider a collection of mean one exponential i.i.d. random
variables. Define the order statistics of these random variables as .
That is,

min
second smallest

max

14 22

Now the first jumps of the process can be constructed from the variables
as follows. The first jump occurs after a time that is exponen-

tially distributed with parameter . The second jump occurs at a time , which
is beyond by an amount , which is itself distributed exponentially with
parameter 1. This continues, and we see that form a collection of
independent exponentially distributed random variables with parameter 1,
1 . (See [TK] for a proof of this equivalence.) Therefore we can construct

from the as follows. The first jump of can be placed at time ; the
second can be placed at time ; and the
can be placed at time . We therefore see that

max 1

(There are several ways of obtaining this result; we gave the one we found
cutest. If you don’t like this method, you can derive the result using generating
functions, as Larry Shepp pointed out to us.)

This shows that at every time the process has a geometric distribution
with mean exp . This means that satisfies the conditions of Chernoff’s The-
orem, with a rate function . Furthermore, you can easily show that if rep-
resents a linear Poisson process with 0 , then we can represent
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where the are independent linear Poisson processes satisfying 0 1.
Therefore we obtain the following

exp 14 23

. This is Chernoff’s Theorem applied to the random variables .

0 0 0
0

max

. We now show how to bound the growth in the difference between
and . We will do this by constructing random processes that stochastically
bound the growth in this difference. We will look at the unscaled processes, and
then scale time and space. Construct the processes and on the same
space so that the following occur:
1. All exogenous arrivals (associated with the arrival rate ) occur at the same

times in both processes.
2. All retries in both processes occur at the same times, that when

, there can be retries of one and not the other.
Note that the main difference between the processes and

is that has packets of unit length, while has packets with random
lengths.

Let us consider a “chain” defined in terms of . A chain is a set of two
or more arrivals (either exogenous or retries) that have at most one unit of time
between neighboring arrivals. The odd-numbered arrivals (first, third, etc.) in a
chain see an empty channel, the even-numbered ones cause collisions (freeing the
channel). All members of a chain are unsuccessful, except the last member of a
chain that has an odd number of participants.

Suppose that we now construct the process with 0 0 , and
suppose that is large so that the packets in the process are likely to be
very near unit length. The two processes and will be nearly identical;
the chains of one will be the chains of the other, until a mistake first occurs. A
mistake can occur in one of several ways. A chain might be broken by a service
time being short, so that a success occurs in the middle of the chain. Or the last
member of a chain (or a singleton) might stretch long enough to collide with the
next chain or singleton. Furthermore, while one channel is occupied and the other
is not (when, say, a singleton stretches or shrinks), there might be a difference in
the arrival processes; we classify this as a rebound. The rate of rebounds at time

is .
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Let us now bound the growth of the difference between and . Let
us consider the effect of a single mistake that occurs in a chain. The length of even-
numbered members of a chain is obviously irrelevant, since they spend zero time
in the channel (they collide immediately upon arrival). Odd-numbered members
can grow to arbitrary lengths (except for the last member of a chain, which we con-
sider separately below). However, if an odd-numbered member of a chain shrinks
to the point where it is successful, then the chain is broken, and the processes dif-
fer by one (in the backlog, meaning ). The latter part of the
chain remains a chain, but the even members become odd and vice-versa. This
leads to two effects. The first effect is that the end of a chain changes from even
to odd and vice-versa. Therefore, if the original chain was odd (so that the end
member was successful), it becomes even and the end member is unsuccessful.
If no other difference between the chains occurs, then the two processes end up
equal at the end of the chain, the successful member simply having changed time.
However, if the original chain was even, then it becomes odd, so that at the end of
the chain the processes differ by two. We can therefore bound the effect of each
mistake as an increment of two in the difference between processes.

The second effect of a mistake in a chain is that the periods of time the channel
is occupied after the mistake are switched with the periods of time the channel is
free. This leads to an extra difference in the rate at which retries occur; again, the
difference in the processes is bounded by two for each mistake that is made.

Mistakes made by singletons and by the ends of odd chains can cause new
chains to form, for chains to join, or for chains to pick up a singleton. This can
happen when the service time for the singleton or end member of an odd chain is
so long that it collides with the next arrival. This again can lead to an increment
of at most two in the difference between processes, and again we can count this
difference as occurring at the time when the mistake is made.

After a mistake is made, rebounds occur according to a Poisson process with
rate equal to the difference in the processes (remember that the processes are
scaled by ; the rebounds occur at rate times the difference in the actual back-
logs, which is the difference between and ). Therefore, each mistake can
lead to a sequence of rebounds that is stochastically bounded by a linear Poisson
process with arrival rate 2 . (Equivalently, we could analyze a linear Poisson
process that has pairs of arrivals instead of single arrivals, but the process we de-
scribed is obviously stochastically equivalent.)

To finish the analysis we need an estimate on the rate of occurrence of mistakes.
The probability that a packet causes a mistake is equal to the probability that it is
smaller than the time until the arrival of the next packet if that time is less than one,
or is larger than that time if the time is greater than one. Since the interarrival times
are exponentially distributed with parameter , and since the packets in
the process are approximately normally distributed with standard deviation
1 , you can see that there is a constant independent of such that
the number of mistakes that occur in a time interval of length is bounded above
by a Poisson process with rate . Therefore, for the scaled processes
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and , the number of mistakes in a time interval of length is bounded by
a Poisson random variable with parameter .

Each mistake leads to a growth in the difference of at most two. The process of
rebounds due to a particular mistake is then bounded by a linear Poisson process

with rate 2 ; equivalently, the number of rebounds up to time is bounded
by a linear Poisson process at time 2 .

This lemma is the key to seeing why the limits 0 and inter-
change. We can couple the processes , the true i.d. process, and ,
its approximating process with stages, so that they are very nearly equal over
any finite time interval of length , where we are free to choose any convenient
value for . Then we choose a 1 and apply the lemma. We see that
the probability that the two processes differ on an interval of length is smaller
than exp 1 2 . Then consider the processes over sequences of times of
length , where we choose larger than the time it takes to go from to

, and larger than the time when the cheapest path that stays in the interval
from to has an function larger than 1. We can restart the

process to be equal to the process at the end of each interval. Then
we see that the deviations of each process occur at the same exponential rate, and
within of each other.

We now sketch a proof that the Freidlin-Wentzell theory applies to i.d. Aloha.
That is, we show that the escape time for to leave the stable region
is well approximated by exp . The problem is that the process might
spend an inordinate amount of time in a neighborhood of the point . This would
enable the process to have cycle times that are extremely long, without deciding
whether or not it leaves the stable interval. This is the problem of “characteristic
boundary,” which has been extensively studied principally by Marty Day [D2],
[D3], although Ross Pinsky and Tom Kurtz have also looked at the problem (and
perhaps others as well). The problem is not so difficult in our case, though. Since
we have a one-dimensional process (at least, the basic underlying process is es-
sentially one-dimensional) we can obtain simple bounds on the time the process
spends in a neighborhood of any point simply by comparing it to a balanced ran-
dom walk without drift. This will enable us to conclude that the probability that
the process spends an exponentially long time in a neighborhood of without
leaving the neighborhood is small, uniformly in starting points in the neighbor-
hood.

Actually, we can conclude more than we do. It is not hard to obtain estimates
that show that the process has a positive probability of returning to the stable
interval once it has exited. We do not prove this here, even though it is not so
difficult. See Rosencrantz and Towsley [RT] or Drmota and Schmidt [DrS] for
proofs.

Once we have proved that the process does not hang around near for ex-
tremely long periods of time (perhaps exactly along the lines of the escape from

, the attracting point), we can use the Freidlin-Wentzell theory to show that es-
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capes take about exp to occur. This concludes our heuristic discussion of
the Freidlin-Wentzell theory as applied to Aloha.

Our last topic is a sketch of why we think our four-parameter change of mea-
sure 0 0 1 1 is asymptotically optimal as . Consider an
optimal change of measure for the level approximating process to make
a large deviation from to . For each we have to find the cheapest
change of measure minimizing , where is the drift associated with

.
First we should note that this change of measure is definitely not optimal for any

finite . This is because we know that an optimal change of measure is given by
a such that

14 24

But it is easy to see that the proposed change of measure leads to the jump rate
at level changing, with all other jump rates not changing, and a simple

calculation then shows that this is an optimal thing to do for any fixed .
The optimality we are referring to, then, does not hold uniformly over all lev-

els, but is approached in the following manner. We can achieve a measure that
has nearly the same cost and drift as the proposed change of measure with a that
is constant for indices . This is achieved in a similar fash-
ion to the way polarized light can be rotated through a series of polarizing filters
with arbitrarily small loss of amplitude. The cost of changing from one value to
another can be made arbitrarily small in space. (The formal calculation
showing this is not difficult, but since we do not have a complete proof that the
four-parameter family is optimal, we don’t want to take the space to derive this
result.) That is, there might be a small boundary layer near the levels one and
that do not have the same jump rates as the interior, but the effect of this boundary
layer on the cost and on the drift is asymptotically negligible for calculation, and
the problem reduces to the four-dimensional one we solved earlier.

Gaver and Fayolle [GF] developed a model of Aloha for analyzing burst arrivals,
or equivalently long messages. The idea is that messages may come in batches
of more than one packet. In fact, messages might consist of very long series of
packets. Therefore, the batch is approximated as a continuous spread of packets.

Their model can be described as a finite levels model with two levels. When a
batch arrives it tries to seize the channel. If the channel is free (level zero) then
the batch will begin to drain through the channel continuously (the system be-
ing in level one), until it either finishes or suffers a collision with another batch.
When two batches collide they both immediately join the retry queue and the sys-
tem goes to level zero. In contrast with other models, though, all the transmission
prior to the collision is regarded as successful. This is because the prior transmis-
sion actually consists of many “small” packets, and only one packet was involved
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in the collision. If packet lengths are small compared to batch sizes, this would
seem to be a reasonable approximation.

Arrivals of batches are, as before, Poisson with rate and batch size is expo-
nentially distributed. Therefore the system is Markovian, and can be described in
terms of two parameters: , the number of backlogged batches, and the level ,
which is either zero for an empty channel, or one for an occupied channel. The
finite levels model is given by five jump rates and directions:

Jump direction Jump rate Interpretation
0 1 1 0 arrival of new batch
0 1 0 0 retransmission
1 1 1 1 arrival of new batch
1 1 0 1 retransmission
1 1 1 1 1 successful batch leaves.

Let us calculate the drift of this process.

0 1 1 1

1 1 1
0

0 0
1 1

2 1

0 0 1 1 1 2 1

It is clear that this drift is monotonically decreasing as increases from zero
to , it is equal to 2 2 1 at 0, and approaches 1 2 as
approaches . Therefore for any 1 2 there will be a unique stable point
where the drift is zero. It is easy to find this point is given by

2
1 2

14 25

This leads us to conclude that the process has a unique invariant measure (you can
see this by Dai [Da] or Chen [Cn] directly), and that the tail of this measure can be
estimated by the Freidlin-Wentzell theory. For example, for 1 4, 1 4,
and as 0 we expect the invariant measure to concentrate near this point. We
could estimate the steady-state probability that 1 by solving a variational
problem. Gaver and Fayolle calculated the invariant measure explicitly in [GF].

Write down the variational problem that you would use to esti-
mate the steady-state probability that 1 when 1 4. Solve the problem
by recalling that the solution can be represented as

inf
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Why is this model different from all other Aloha models? How can it be stable
when the others are not? Since the stability is equivalent to examining the behav-
ior of the system when becomes large (the stability results from the drift being
negative as ), let us examine the behavior of the system when is large.
When is large, the most likely behavior is for the level to switch between zero
and one with rate about . Very rarely [with probability 1 ] a transi-
tion corresponds to the entrance of a new customer, or the departure of an old one.
How is it that a customer manages to depart? His service time must be smaller
than 1 —otherwise he gets bumped back to the waiting room. More ex-
actly, the system switches between levels zero and one with rate very nearly .
Each time the system is at level one there is a chance that a customer departs.
This chance is approximately equal to the probability that an exponential random
variable with mean one is smaller than an exponential random variable with mean
1 . There are approximately transitions between levels in each unit time in-
terval, so there are about 1 2 chances for a departure in each unit time interval.
Therefore we see that the rate of departures from the system is approximately 1 2
as . The reason that there are departures from the system is that very
likely there will be a short batch that attempts to depart, since there are many at-
tempts in a unit time interval. Equivalently, all the work in the system is useful
work, and the system is busy about half the time when is large, so the departure
rate is about half the rate it would be if the system were continually busy.

Figure 14.17. The structure of a Gaver-Fayolle Aloha model that has a min-
imum time for successful transmission.

Now let us look at a slightly different system. Suppose that there is some min-
imum amount of time that the channel must be occupied so that a transmission
may be regarded as successful. In reality, at least the header of a packet must be
transmitted without error in order that any bits might be received successfully. Or,
we could say that a bit takes a small but finite amount of time to transmit. We can
model this by the addition of a level to our finite levels model. We can take a sin-
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gle level above zero that has no possibility of successful transmission, that feeds
into a group of levels that encode the rest of the distribution of transmission time.
The original Gaver-Fayolle model only has one state in this “group,” so our anal-
ysis below is more general than an analysis of the original model. Note that the
i.d. model is of this type.

We claim that every model in this class has the property that as , the
drift tends to . This means that any such system can only be quasistable, not
absolutely stable. Here is how to prove the claim. The rate of transition from level
zero to level one is . The rate of transition from level one to the higher levels
is a constant, say . The rate of transition from the higher levels to level zero is at
least , and at most a constant . Therefore we see that as ,
the steady state probability among levels satisfies

0 14 26

where [0 ]. Furthermore we have

0 1 14 27

The net flow into the states 2 is 1 , and there is a rate out of each
state of at least . Therefore

1

1 14 28

Now looking at the flow into and out of the state one, we see that for some
(representing the maximal rate from any state in 2 to 1)

1 0

1 0
1
2

14 29

for large enough. Then (14.28) and (14.29) show that the drift is at least

1
2

14 30

which approaches as . This shows that the system cannot be stable
if there is a lower bound on the amount of time a packet needs an uninterrupted
channel in order to count the time as successful.
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Section 14.6. A PARADOX—RESOLVED
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We could presumably carry this analysis further, to see in more detail how these
systems differ from the plain Gaver-Fayolle model and to find the large deviations
rate function that corresponds to instability. Lack of time and space prevents us
from including that analysis. However, we hope that despite this lack the reader
appreciates how a subtle modeling inaccuracy can change a system from having
unstable (quasistable) behavior to one that has stable behavior.

This section contains a cursory analysis of the large deviations of some simple
slotted Aloha models. We do not provide the requisite theory for this analysis,
since these are discrete-time models. (For the relevant theory, see Azencott and
Ruget [AR], Wentzell [Wen], Deuschel and Stroock [DeS], Dembo and Zeitouni
[DZ], or Dupuis and Ellis [DE2]. For justification of large deviations applied to
slotted Aloha, see Jelenkovic and Weiss [JW].) We deemed them worthy of inclu-
sion since they are the most common Aloha models, and their analysis is simpler
than the analysis of i.d. Aloha, so more information can be extracted from them
(see, e.g., Exercise 14.24).

Here are some standard Markov models of slotted Aloha. We let be the
number of packets waiting to be retransmitted at slot 0 1 2 . We suppose
that:

1. The number of fresh packets arriving at slot is an independent random
variable with distribution

That is, the distribution may depend on the value of , but is otherwise in-
dependent of the past. Previously we had a Poisson process, and later in
this section we will specialize to three distributions for , including Pois-
son.

2. The number of retransmitted packets arriving at slot is binomial ,
where is a fixed number.

3. If the channel contains exactly one packet during a slot, the packet leaves
the system. Otherwise all fresh arrivals and retransmissions fail, and join the
waiting packets.

With these assumptions, is a Markov chain on the positive integers whose
transition probabilities 1 are given
by

if 2
1 1 if 1
1 1 1 if 0

1 if 1
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birth-death model,
Poisson model Bernoulli, finite population model

The three models.

Birth-deathmodel

Poisson model

Bernoulli, finite population model

if 1, while for 0,

0
0 if 2

0 if 1
0 0 if 0.

The mean change in size of is the drift, given by

drift 14 31

We analyze for three specific arrival modes : a a
, and a .

The birth-death model is included for the ease with which we can calculate its
statistics, and the limpid formulae that describe its behavior. The Poisson model
is the standard infinite population model. The finite population model is probably
the most realistic.

1. : We suppose that 1 and ; that is, packets
arrive singly with probability at each slot. Furthermore, when 0 we
suppose that with probability 0, an arriving packet does not transmit but
instead gets queued. [This is to prevent 0 (waiting room empty) from
being an absorbing state.] Hence, 1 is either , 1 or 1
when 0, and is either zero or one when 0.

2. : We assume that the probability of new packets arriving at
a given time slot is Poisson distributed:

!
for some 0. This is the model we analyzed briefly in §14.2 and §14.3.

3. : Suppose that there are stations, each
of which attempts to transmit its current packet (if it has one) before gen-
erating a new one. At each time slot while a station is without a packet
it generates a new one independently with probability . Thus, the arrival
probabilities depend on the state as

1

if 0 , and 0 otherwise.
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Recall that the parameter is the probability that a particular packet that is waiting
to retransmit will attempt to retransmit at a given slot . Now define

14 32

As 0, tends to a continuous-time deterministic process we call ,
much as is our standard setup. Suppose that does not de-
pend on , as in the Bernoulli and Poisson models above. Then if 0 as
is held fixed,

2
1 1

1 0
1.

14 33

Hence
lim

14 34

where is the average packet arrival rate . If the do depend on
, then we assume that as 0 and , lim exists. We

define through in (14.33) instead of using .
We assume that a large deviations principle holds for the processes defined by

(14.32). We furthermore assume that the Freidlin-Wentzell theory applies. The
rate function for these processes is defined by

sup log 14 35

(The references cited above give this definition; it should be plausible from Cher-
noff’s Theorem.)

The first step in analyzing the behavior of any such system is to examine the be-

havior of . Since drift , we need to examine where the
drift is positive and where it is negative, to find the stable and unstable regions.

Near 0, drift 0, and drift 0 at 0 if and only if 0
for 2. That is, an empty system tends to grow.
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Definition 14.19.
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If the function has at least two roots and , (with
all other roots), then we call the interval the stable region and

the stable point.

Now assume that does not depend on , as in the Poisson and birth-death
models. Then if , we obtain from (14.34) that

14 36

has a unique minimum at 1 , and exp
there. As increases beyond 1 , we get .

If then 0 for all 0, and the process as .
This means that the backlog would tend to increase without bound, a poor sort of
performance.

We suppose that has the property that 0 0 and that there exist
such that

0
0 for
0 for and for some interval

Assuming that the system starts with 0 , Kurtz’s Theorem shows that
as increases. Then the Freidlin-Wentzell theory comes into play,

showing that will remain near for time , where , and
solves the variational problem (14.16).

While , we can easily estimate the performance of the system. Newly
arriving packets arrive alone with probability

1

The probability that a slot has no retransmission attempts is approximately .
Hence the probability that an arriving packet experiences no collision is about

. If a packet experiences a collision, it undergoes a geometrically dis-
tributed number of retries, each retry being geometrically 1 spaced from the
one before. The probability of succeeding on retry is ; hence the distribu-
tion of delay experienced has been determined.

Make the preceding discussion rigorous. Hint: as 0,
sup exp 1 . This can be used

to bound the distribution of the number of packets that attempt to retransmit at
any slot in 0 slot number . Prove

no. of slots no.

0
[0

Let us see how this definition applies to our examples. For the birth-death
model,

1 1 14 37
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Large time behavior of slotted aloha.
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Here and 1 , so the minimum of is

1 exp
1 2
1

1 exp 1
1

14 38

which is negative for . Thus, there is a stable region if with 0;
must be evaluated numerically.
For the Poisson model, and , so

14 39

and the minimum of is

exp exp
exp exp

exp 14 40

which is negative for . Here, the equation 0 must be solved
numerically for and .

To ensure exists for our finite population Bernoulli model, we scale the
parameters (total number of stations) and (probability of generating a new
packet) with . Specifically, we suppose that there are numbers and with

14 41

Then we find

!
that is, the process is Poisson with (state dependent) rate . By (14.34)

1 14 42

It is difficult to give closed form regions for this case. See Figures 14.25–14.28
for examples of parameters with stable regions, and Exercise 14.29 for an idea of
asymptotic behavior.

When there are at least two roots 0 of the drift function , we know
(by a simple extension to Freidlin-Wentzell theory to the case where the drift at
the boundary of , a one-dimensional region, is zero) that the system will
take about time to leave the basin of attraction of , where satis-
fies (14.16), with given by (14.35). Since this is a one-dimensional variational
problem, we may use the solution as developed in §11.5. To recapitulate,

14 43
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Exercise 14.20.

Exercise 14.21.

Poisson model.

Exercise 14.22.

Exercise 14.23.

where 0 solves

log 0 14 44

1 1 14 45

We now explore the consequences of this analysis for our three models.

For this model, there are two roots, and , of the drift function when .

1 1 1 1 1 14 46

Solving (14.44), we obtain

log
1

1

which can be evaluated numerically once we find . The results are given in Fig-
ure 14.11, presented in §14.4.

Show 1 . Can you obtain better bounds? An
asymptotic expression as 0?

Show 0 as . Show as 0.

We saw in (14.15) that there are two roots, , of the drift function when
1 . Now by (14.45),

exp 1 1 1

We can solve 1, 0 for numerically, and can also find
and numerically. This gives a numerical procedure for evaluating . The

results are given in Figure 14.11, presented in §14.4.
Show 0 1 1 . Hint: where is the drift

minimized?

Show that 0 as 1 , and as 0. At what
rate does this occur? (See Exercise 14.24.)
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Exercise 14.24.

Finite population model.

I o

z z g z e
e ge ze g ze t

z z I b
n

M z b n z e e e b n z e

e ze e

z b n z

z z z

z t z
z z

z z

z z
z z

n b

Show that, as 0,

log
1

log
1

log log
1

log
1

Hint: show first that 0, log log . Then if , we
obtain 1 , so for large . (See Drmota and Schmidt
[DrS].)

It is difficult to describe the regime for which this model has a quasistability re-
gion. We can easily find , , and numerically for any specified values of
and by using the form

exp 1 1

1

[This form is just that of a Poisson source, with arrival rate .
Why?] The numerical results are given in Figure 14.11, presented in §14.4.

The drift functions for these parameters are illustrated in Figures 14.25—14.28.
We have drawn the root in these figures; is a second stable point for this
model. This gives rise to the following behavior of the finite population model.
For a long time the process remains near . Then it makes a switch, and
remains for a long time near . It eventually changes back to , and the cycle
repeats. You can formulate some large deviations questions: How long will the
process remain in the basin of attraction of , How long will it remain near ,
and then since the invariant measure of the process degenerates (asymptotically
as 0) to two point masses, What are the respective masses at the two points

and ? These questions are of purely theoretical interest, since any real system
that wanders to would most likely be forcefully reset to operate near .

Figure 14.25. Finite population model drift, 10, 0 003.
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Exercise 14.29.

Exercise 14.30.

Figure 14.26. Finite population model drift, 6, 0 04.

Figure 14.27. Finite population model drift, 5, 0 07.

Figure 14.28. Finite population model drift, 6, 0 07.

As and 0 so that , how quickly does
the finite population model approach the infinite population (Poisson) model? In
what senses does this approach take place?

Write a program to verify the entries in Figure 14.11.
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14.8. End Notes
Section 14.8. END NOTES

The analysis of slotted Aloha models in this chapter is based on an AT&T inter-
nal report by Albert Greenberg and A. Weiss. This analysis is largely subsumed by
the previous work of Cottrell, Fort, and Malgouyres [CFM]. Furthermore, many
other people have investigated Aloha via large deviations; see, e.g., Maier [Mai]
and his references.

There is a great deal more work that can be done in these multiple-access chan-
nels. David Aldous [Al] has shown, based on a large deviations analysis of a ball-
and-bucket model, that the popular Ethernet protocol is unstable when subjected
to Poisson arrivals. Goodman et al. [GGM] showed that a finite-population Ether-
net model is stable for low enough arrival rates. Many adaptive schemes (usually
called “controlled Aloha”) have been proposed, and most work pretty well. For
a good overview of the field, see Rom and Sidi [RS]; also, the IEEE Trans. Info.
Theory volume 31 (1985) has many articles on the subject. Even though it is not
hard to think of improvements to the Aloha protocol, it survives because of its
simplicity and adaptability.
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Chapter 15

Priority Queues

Priority queues are used extensively in modeling the performance of computers
and computer algorithms. They are also observed in real life sometimes: at su-
permarkets or at toll plazas we might join the shortest queue, and at these places
extra service people might be put on the longest queue. In this chapter we an-
alyze three simple priority queues: one with two types of customers, “low” and
“high” priority; a system of two queues with a single server who serves the longer
queue; and a system of two queues where arrivals join the shorter queue. These
basic models are, like the 1 queue, building blocks for more complicated
and realistic models.
“Join the shortest queue” is an optimal policy for many models in terms of low-

ering the waiting times of arriving customers; see [Web] (although see also [Wh1]
for some counterexamples). Priority queuing models shared resources, such as
memory. “Serve the longest queue” is an attempt at fairness, or to lower the vari-
ance of waiting times. Although conformance to strictly proper English usage
would have us call these models “Serve the long queue” and “Join the short
queue” (since we analyze only two-queue systems in detail), custom and a hope
of generalizing these models will sometimes lead us to lapse.
This chapter can be viewed as a collection of analyses of three related systems

consisting of two queues each. It can also be viewed as a complement of Chapter
16, which is another two-queue system. In all these systemswe consider questions
of “asymptotic correlation” or “induced rare events.” For example we consider,
as becomes large,

15 1

where refers to steady-state expectation, and is the number of customers in
queue , 1 2. This type of question has a compelling interpretation. Consid-
ering as a “subsystem” of the queuing system, we are asking “If a subsystem
does something rare, what can we infer about the rest of the system?”
The mathematical difficulties for all these systems are similar. One is the pres-

ence of boundaries, either the usual ones at 0, or ones that arise in the service
or arrival policies, such as “serve the longer queue” which has a discontinuity in
service rates along the line . Another difficulty is the possibility of a non-
compact state space; the might not be bounded. The last difficulty is the “sin-
gular” nature of our conditioning. That is, conditioning on is conditioning
on a “thin” set, that furthermore is not compact.
The techniques we use to overcome themathematical difficulties are the follow-
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ing. The boundaries are generally handled by the flat boundary theory of Chapter
8. There are two additional special arguments we also need. For some processes
we have to do a transformation to turn a discontinuity into a standard flat bound-
ary. Also there are the point discontinuities that arise at the intersections of flat
boundaries (typically the point 0 ); for these, we only have to show that the prob-
ability of staying near the point is high, and that the point isn’t absorbing.
Noncompactness is only a problem when we want to study steady state via the

Freidlin-Wentzell theory. For this we simply have to prove positive recurrence in
order to use Theorem 6.89. Our processes have constant coefficients within large
regions, so these estimates are easy.
The argument for conditioning on a small set is pretty simple for processes on

a lattice, since there really isn’t a singularity: points carry all the mass, so it isn’t
very hard to justify conditioning on some set of them, even asymptotically. This
might be more of an issue for other types of processes.
While our main results have the same form as (15.1), we obtain much more in-

formation from our approach. For example, we also obtain sample path informa-
tion of how the overflows are likely to occur. To help keep track within this chap-
ter we provide the models with the nicknames PP (Preemptive Priority queue), SL
(Serve the Longest queue), and JS (Join the Shortest queue).

Figure 15.1. Transition diagram for priority queue.



"
n

n

421

{

{

{

{

Definition 15.2.

15.1. Preemptive Priority Queue

1 2
1 2

1 2

1 1
1 1 2

1 2

2 2
2 1 2

1 2

3 3
1 1

1

4 4 2 1 2

1 1 2 2

Section 15.1. PREEMPTIVE PRIORITY QUEUE

=

!

! = ! = +
+ =

! = ! = +
+ =

! = − ! = =
! = − ! = =

! = ! ;

= + = =
〈! 〉 ≥

x t x t t

n

x t

e x x x n
x x n

e x x x n
x x n

e x x
x

e x x x

n n

z t
n
x nt

x x x x
z

λ λ
µ µ

( ( ), ( )) (

( )

( , ) λ ( )
λ <

( , ) λ ( )
λ <

( , ) λ ( )
µ >

( , ) λ ( )
µ , >

( ) ( ) ( . )

, ( , )

high-priority
customers low-priority customers

The finite process is defined by the following rates and di-
rections:
Jump direction Jump rate Interpretation

High priority arrival

Low priority arrival

High priority service

otherwise Low priority service.

The simplest model of a priority queue has a single server for a single queue.
There are two types of customers arriving at the queue. We call them

, or Type 1 customers, and , or Type 2 customers.
(Equivalently, there are two queues, one for each type of customer, and a sin-
gle server who shuttles between the queues.) Each type arrives by an indepen-
dent Poisson process of rate or respectively. Their service times are inde-
pendent exponentially distributed random variables with rates and respec-
tively. The server always serves high-priority customers whenever one is in the
system; it only serves low-priority customers when no high-priority customers
are present. That is, the server will interrupt the service of a low-priority cus-
tomer in order to serve an arriving high-priority customer. This makes the pro-
cess no. Type 1, no. Type 2) customers in the system at time
a Markov process. We are mainly interested in the finite version of this system,
where the total capacity of the queue is (and arrivals to a full queue are rejected).
The transition rates and directions for the finite system are given in the following
table and picture.

1 0 0

0 1 0

1 0 0
0 0

0 1 0 0
0

Suppose that the queue has capacity ; that is, there is room for only cus-
tomers in the queue (including the one in service). There are several questions we
might ask about the system: What is the stability condition for the infinite system
(that is, if the queue size is infinite)? And, for the infinite and the finite system,
what is the probability (in steady state) that the queue is full? What is the most
likely way it becomes full? How long does it take to fill?
We make the usual scaling and then try to answer these questions. Let

1
15 2

this conforms to our standard scaling (5.1). This process satisfies a large devia-
tions principle away from the corners of the triangle according to Chapter 8. The
flat boundaries in this case are 0 and 1 (note that 0 is not
a boundary!). The infinite process extends to 1 1 1, and its transitions
and rates are obtained by simply ignoring the boundary at one. Therefore we may
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15.2. Most Probable Behavior—PP
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use the Freidlin-Wentzell theory to analyze the way the process (finite or
not) escapes from the region : 1 1 1 (remember that point
singularities such as the corners of the triangle do not affect the Freidlin-Wentzell
theory, as long as the corners are not absorbing points; see, e.g., Corollary 6.63
and Corollary 6.65). Denote the boundary arising from the finite capacity by

: 1 1 1 15 3

We begin our analysis with an investigation of the fluid limit process . We are
interested only in the case where the process is stable; therefore we may pose at
the outset , so that the high-priority process (which is just an 1
queue) is stable. Let us establish, using (8.11), that that

if 0 and either
1 or

if 0 with
and

0 1 if 0 and 0

0 at 0.
15 4

The first line of (15.4) comes from (5.7)—it is the drift in the interior. The second
line comes from (8.11), considering as the flat boundary as in Figure 15.3. The
probabilistic interpretation of was established in Exercise 8.13.

Figure 15.3. The process regarded with as the flat boundary.

From (8.9)–(8.11) we see that, if then the drift is away from , so
that (5.7) applies. If then the drift is towards , and the derivative
of in the new coordinates is equal to

1 0 2 15 5
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where solves

1 2 0 15 6

This gives the drift along the boundary ; changing coordinates back to gives
the second line of (15.4). Similarly, along the line 0 we obtain the third line
of (15.4) from

0 1 15 7
where, since , solves

1 0 15 8

Equation (15.4) has two or three domains of solution, one inside the region
0, possibly one on the boundary , the last on the boundary 0. Clearly

reaches the line 0 in finite time. From there it drifts with constant rate
with velocity 0 1 . So we see that the process approaches
(actually reaches) 0 if and only if

1 0 15 9

Thus we have arrived at the stability condition: and (15.9). (Actually,
(15.9) implies since rates are positive.) Equation (15.9) has a simple in-
terpretation: the arrival rate of low priority customers is , and the service rate is
during any time the server is not busy with high priority customers. The server

is busy with high priority customers fraction of the time, so the long term
service rate available to low priority customers is at most 1 . Note

that 0 if , so the Freidlin-Wentzell boundary condi-
tion (Assumption 6.4) might not hold. This is not a problem, as we see in §15.5.

Our first problem is to find the frequency of buffer overflow. We do this, as usual,
by writing a rate function and solving an associated variational problem. The pro-
cess 0 as whenever the stability condition (15.9) holds. There-
fore the Freidlin-Wentzell theory suggests that we can estimate
by

15 10
where

inf

: 0 0
15 11

The rate function corresponds to and is defined via the local rate func-
tion below. We proceed formally with the calculations, mainly the solu-
tion of the variational problem (15.11), leaving some justifications and a proof
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of the connection between the variational problem and the probabilistic estimate
to §15.5. The results of this section are summarized in Lemmas 15.20 and 15.21
below.
If 0 and , then the process is not near a boundary, and (5.2)–(5.4)

give

sup 1 1
15 12

where corresponds to an 1 queue with rates and corresponds
to a Poisson process with rate :

log
4

2
4

log
15 13

The same holds for 0, 0.
It will be convenient to perform the calculations with an alternate version of

the local rate function, as described in Theorem 5.26 (the notation is chosen to
facilitate the treatment of the boundaries). In the interior (when 0 or 0)

inf 1 1 1

15 14
where 1 1 1 are the appropriate twisted rates, and

1 1 1 0 : 1 1 1

log

Compare this with the form of in (15.13).
Prove (15.12), by showing that when 0, the maximiza-

tion over splits into two independent maximizations over and . Check that
(15.14) is indeed equivalent to (15.12).

Let us first calculate the optimal path from 0 to , among all paths that remain
in the interior (except, of course, their endpoints). We shall then establish that an
optimal path consists of at most two segments, each a straight line, and calculate
the cost of traveling along the boundary.
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For paths that remain in the interior (i.e., where 0 and ), is given by
(15.12). The strict convexity of and Lemma 5.16 guarantee that the lowest cost
interior path from 0 to the line must be a straight line. So, suppose our path is
of the form

for 0
1

(so that indeed it ends on ). By (15.14) the minimal cost of a straight line path
is

min min
1 1 1

1 1 1

15 15
Since as 0, there must be a minimum where the pa-

rameters 1 , 1 , and 1 are strictly positive. Therefore, we are justified
in setting partial derivatives of (15.15) with respect to 1 , 1 , and 1 to
zero to find the extremal point. From this we obtain

1 1
1

15 16

Since there is only one point where the derivatives vanish, it must be the global
minimum.

We could have derived the relation 1 1 by using the rela-
tionship between the coefficients appearing in the various definitions of the rate
function. Indeed, if is given by a particular in (15.12), and by a partic-
ular set of 1 , 1 , and 1 in (15.14), then Exercise 5.29 gives

1 1 1 15 17

The relation now follows directly from Definition 15.2.
Relation (15.17) allows us to do partial calculations with each form of the rate

function, and then to piece the calculations together. Let us define 1 .
The quantity to be minimized on the right of (15.15) becomes, after some algebra,

log 1 log 1
15 18

Define and , and compare the minimization of (15.18) to
the variational problem (11.8) of the 1 queue, starting at zero and exiting
at one, and its solution in Theorem 11.15 (see also Lemma C.8). Ignoring for a
moment the constraint 1 1 , the quantity to be minimized in expression
(15.18) is the same one encountered in the 1 queue, and we conclude that
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Exercise 15.5.
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the optimal change of measure is where the twisted arrival rate is and the twisted
service rate is , or

15 19

This corresponds to a path that travels in direction

15 20

and by (11.23), the associated cost is log .
Perhaps the best way to interpret this equation is using the result of §7.4. There

we showed that any path is equivalent to a change of measure ;
in the present case,

log log

since . The path defined in (15.20) clearly goes from 0 to in time
. The total cost of this path is

log

The only question is, is this new path truly in the interior of the state space?
That is, under this twist, is 0? From (15.20), 0 for 0 if and
only if

15 21

Derive (15.19) directly from the minimization (15.18), and verify
the calculation leading to (15.21).

We have now proved that the condition for the interior extremal path to be
strictly away from the boundary is . In case of equality clearly it is better
to move along the boundary. In Exercise 15.6 below we show that if then
it is also optimal to move along the boundary. Note that the condition does not de-
pend on the value of ; this is reasonable since doesn’t operate in the interior.
Also note that has the right dimensions (the same as and , inverse time).

Show that if then the optimal straight line path is along
the boundary 0. Hint: consider the last expression in (15.15) but add the
constraint 1 1 . Under the above condition there is no local minimum
in the interior of the parameter set (0 1 , 1 1 0). Use growth
estimates on near 0 and as and continuity to conclude that
there must be a minimum on the boundary 1 1 .
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This concludes the computation of the optimal interior path. If 0 and
0 the local rate function changes. In that case, by (8.12)

sup 1 max 1

15 22
We will not be concerned with paths along the boundary , so we don’t give the
local rate function for those paths, although it is easy to do so. Again, the alterna-
tive form of the rate function will be useful. From Theorem 8.19.ii

0 0 inf 1 1 1 1

0 0 0 15 23

where and are the twisted rates, and the infimum is over the set

0 1 0 :
0 1 1 1 0
0 0 1 1

You should have the following interpretation inmind for these quantities. is the
fraction of time spends on the boundary when following the path 0 .
The jump rates and change to 1 and 1 in the interior ( 0), and
to 0 and 0 on the boundary.

Check that the local rate function has the form (15.22), and that
the form given in Equation (15.23) is indeed equivalent.

Show that if is given by a particular in (15.22), and if
it is also given by a particular set of in (15.23), then

and 15 24

Hint: see Chapter 8.

Relation (15.24) allows us to do partial calculations with each form of the rate
function, and then to piece the calculations together. Furthermore, it tells us that
the critical path has 0 1 since their corresponding and are the
same.
As for the interior paths, the local rate function (15.22)–(15.23) does not depend

on (as long as we stay on the boundary). Therefore, paths on the boundary are
constant speed (straight lines). We can now establish the following facts:
(i) The critical path is composed of at most two line segments, one along the
boundary 0, one in the interior.

(ii) Travel along the boundary always has lower cost than travel parallel to the
boundary but just in the interior.
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Exercise 15.9.

Extremal boundary path.

Remark 15.10.

#

#( , )

#(( , ), ( , ))/
( , )

( , )
λ ( ) µ ( )

ρ

λ ( ) λ ( ) ρλ

µ ( ) µ /ρ

λ ( ) λ ( ) λ

µ ( ) µ /

π λ /µ .

( . )

(iii) There is a critical path which is composed of exactly one line segment: in
particular, the critical path, if unique, is composed of exactly one line seg-
ment. That is, in point (i), uniqueness excludes the case of more than one
segment.

Establish (i)–(iii). Hints: soft arguments suffice. Use the principle
of optimality; see also Proposition 16.10. Show that an optimal path cannot move
from the boundary to the interior and back, to obtain (i). Item (ii) follows from
Definitions (15.12) and (15.22). Finally, use the independence of from in each
region and hence the linearity of the accrued cost to obtain (iii).

When solving variational problems that arise in multidimen-
sional systems, we need to be careful since the rate function is not neces-
sarily strictly convex on boundaries (see Exercise 8.21). This means that minimal
cost paths need not be straight lines for constant coefficient processes. The con-
vexity of the rate function implies that straight lines are optimal; the point is that
there might be other optimal paths, too. We examine several multidimensional
constant coefficient processes with flat boundaries in Chapters 15 and 16. We find
that all the minimal paths we calculate are composed of straight line segments.
This is true not because we that the portions of the paths that are on the
boundary must be linear, but because we that they are. (The portions
of optimal paths in the interior of the state space are linear because the rate func-
tion is strictly convex there by Exercise 5.27; see also Lemma 5.16.) In higher
dimensions it might be more difficult to show that the optimal path is unique
and is hence linear; we analyze only two-dimensional systems, so the bound-
aries are one-dimensional, and the calculation is straightforward. Indeed, for one-
dimensional boundaries, the only possible ambiguity is the rate of travel, not the
direction of travel, so simple algebra suffices to find that the minimum is unique.
Since there is an optimal path consisting of a single straight-line segment, let

us now calculate the cost of traveling along the boundary 0. We use the
form (15.23) of the rate function. We are trying to minimize 0 0
since we are interested in the cheapest straight line path in direction 0 that
goes from 0 to 0 1 . Using the argument leading from (15.15) to (15.16), we can
equate derivatives with respect to the parameters and to zero. After
some algebra (Exercise 15.11) we find that there are constants and such that

1 0
0

1 0
1

1

15 25
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As before, we could obtain the first and third equalities as an immediate conse-
quence of Exercise 15.8; but as we need all these, we shall do it the hard way.

Verify (15.25). Hints: write as an explicit function of the pa-
rameters. Show that

1
0 1 1

Now equate derivatives to zero. You might also use (15.24).

From the definition of in terms of the twisted rates we see that

15 26

We can now write the minimum cost in terms of and alone and reduce the
problem of finding the minimum cost path along the boundary 0 to mini-
mizing, over 0 1, 0, the function

1 1
15 27

where we define
1 15 28

Note that represents the cost of staying next to the boundary.
Derive (15.27). Hint: use (15.25) and show that

1 1 1 0 15 29

Now write as a function of .

Note first that a minimal value of can come only when [0 1 ;
this is because is increasing for larger (note that 1 0
only when 1 ), so that is increasing in that range. The physical
intuition is that there is no benefit to putting more effort into the balance in the

direction, since the larger is, the harder it is for to increase (the low-
priority service rate is ). For any given value of [0 1 , the
value of that minimizes occurs where

0 at
4

2
15 30

Derive (15.30). Hint: show that as or as
(the point where 0). Therefore there is a minimum of

where 0. Factor the resulting numerator into two quadratics, one of
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If then the optimal value of occurs at . If
then the optimal value of occurs at .

ρ
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(λ π µ ) λ µ π ,
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λ
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ρ (θ ) θ / /
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ρ
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π
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π

∂ /∂π /

>

which has no roots, so the roots of the other contains the correct value of . Use
0 in (15.26) to choose the correct root. You will find that

4

so that we can write
4

2

You will recognize this exp , where is the optimal twist for an 1
queue with arrival rate and service rate traveling with velocity .

By Exercise 15.13, the minimum value of occurs, in the space, for
bounded above and bounded away from zero. In order to see whether the min-

imum occurs at 0 or at 0, we look for a minimum of , where
is given in (15.30). We have already argued that there could not be a minimum
to the right of 1 , and since and its derivative vanish there, this point
cannot be a minimum. By continuity of in , there must be a minimum in
[0 1 . Define

1 15 31

0
0 0

. The computations below establish the following.
(i) For each fixed , the function has only one local minimum for

in the interval [0 1 that is hence the global minimum.
(ii) When is given by (15.30), 0 at 0 only if .

(iii) If 0 the minimum is at 0, while if
1 then the minimum is at 0.

By (ii)–(iii), if 0 then 0 at 0, and by continuity in
and (ii) we conclude that the derivative is never negative for in [0 ]. From

(i) we now conclude that in this case the optimal value of is zero. Similarly,
since by Exercise 15.17 we have from (i)–(iii) that 0 0
0 for , and by continuity and (ii) it must stay negative for . By
(i) now we have that the optimal value of is strictly positive for .
The result of the lemma now follows from (i) and the continuity in , so that it
remains to check (i)–(iii).

To establish (i), compute from (15.27) by the usual rule for
differentiating quotients. Since is the square of the denominator in (15.27),
we have 0. You might want to check the computations leading to (15.32); we
used the computer algebra tool Theorist c , and will not write out the complicated
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Exercise 15.15.

Exercise 15.16.

Exercise 15.17.

Exercise 15.18.

Exercise 15.19.

∂ /∂π /

µ λ λ ρ µ π ρ

π
. ( . )

ρ >
> , ∂ /∂π > ,

π ∂ /∂π
, λ /µ ) ∂ /∂π > π π

. . .
λ /µ

ρ( )
λ

µ λ

λ
. ( . )

ρ µ /λ λ λ
λ λ π

ρ
∂ ( , ρ( ))/∂π λ λ

π λ
λ π >

λ λ

λ

λ
µ µ µ λ

µ µ λ
.

λ

λ < µ λ

λ µ µ λ

λ λ
π π

π λ ρ λ

λ λ π >
π λ /µ λ µ π ( )

ρ (ρ, ) / (π , ρ)

expressions. Repeating the procedure for , denote . Again
is positive, and

2 1
15 32

But we know that any value of that might give us a minimum must have 0
in (15.26). Therefore 0 and so 0 so that is an increasing
function of . This means that there is at most one root of in the in-
terval [0 1 , and if 0 at 0, then 0 must be the
unique minimum. (Why? Think about it ) One of the two must hold, since the
minimum cannot be at 1 . This establishes (i).

To establish (ii), note from Exercise 15.13 that

0 1 15 33

(You can check that this gives when . This is the same as
the twist for the interior path at ; when 0 the interior and bound-
ary costs are hence the same, as they should be.) Now at this value of we have

0 0 0 when .
Finally, in Exercise 15.18 below we show that 0 is optimal for 0

provided 0, and in Exercise 15.19 below we show that 0 is optimal
for , which implies (iii).

Show that of (15.31) satisfies

(This may be the form in which you find , depending on how you do your cal-
culations, in Exercise 15.16 below.)

Check that equations (15.31) and (15.33) are correct.

Prove that 1 , so that, for any given
values of , , and , there always exists an interval of where the cheapest
path spends real time on the boundary.

If 0 and 0 then the minimum of is obtained at
0. Hint: show the derivative in (15.27) at 0 is positive. Note that

when 0, as 0.

If then the minimum of is obtained at 0.
Hint: take 1 and 1 with small and positive. Use

1 and 1 2 to show 0.
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Lemma 15.20.

Lemma 15.21.

Comparing interior and boundary costs.

Exercise 15.22.

π λ > λ ∂ /∂π

µ λ
( ρ)

ρ

µ

ρ
ρλ

π µ

ρ

µ

π
. ( . )

( , λ /µ ) λ > λ
∂ /∂π > π ∂ /∂π < π λ /µ

λ < λ
> λ λ

( , )
λ > λ π >

λ λ π
λ ρ ρ

Consider the path from to with minimal cost [the cost is given
by (15.15)]. If , then (15.20) gives the unique interior minimizing path,
which satisfies . If then there is a path along the boundary that is
cheaper than any interior path.

Consider the problem of the path along the boundary ,
from to , with minimal cost (15.27). There exists a unique path with min-
imal cost. If , then this minimum is attained at , and its speed
is given in (15.26). If , the unique minimum is attained at , and
its speed is , with given in (15.33).

Unfortunately we do not have an explicit expression for the critical value of
when . The critical value holds where 0. This can be

simplified to

1
1

0 15 34

There is at least one root of this expression in 0 1 when , since
0 at 0, and 0 at 1 . These statements

follow from the proof of Lemma 15.14.
We state our conclusions thus far in the form of lemmas. The first is established

in Exercise 15.6 and the preceding discussion, and the second followsmainly from
Lemma 15.14.

0

0

0
0 0 1

0
0

Now in order to find the cheapest path from 0 to we use the following easily
demonstrated facts:
1. The critical path is composed of at most two line segments, one along the

boundary 0, one in the interior.
2. Travel along the boundary always has lower cost than travel parallel to the

boundary but just in the interior.
3. The critical path, if unique, is composed of exactly one line segment; that is,

in point 1, uniqueness excludes the case of more than one segment.
Show that these three points are true. Hint: the first comes from

the jump rates being constants and from Lemma 5.16. The second is always true
for flat boundary processes. The third comes from the first and Lemma 5.16.

There is only one more calculation to do before we can say that we have found
the minimal cost path for travel from 0 to . We need to see when the path in
the interior has lower cost than the path along the boundary. Unfortunately, in
general we cannot give a closed form expression for the answer to this question.
We have to content ourselves with an existential statement (and an efficient way of
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λ

µ < µ
λ λ µ < µ

µ µ
µ

µ

µ < µ λ < λ
λ (λ , λ )

π >
λ λ

π >
λ λ

λ λ

λ λ

λ λ
λ < λ

λ λ λ < λ
λ < λ

calculating the break point). It turns out that there will be a region of where the
minimum in the interior is higher than the minimum on the boundary if and only
if . The reason for this is pretty clear: in the interior, the cheapest path is
formed by changing and by the same amount. So if then it will be
cheaper to travel by changing than by changing for a path sufficiently near
the boundary (changing a little less will push the path to the boundary, but then
changing so that the path will continue to at the same rate as before should
cost less).
When , we clearly see from (15.31) that . That is, there

is a region of [namely ] where the cheapest path along the boundary
spends positive time on the boundary ( 0), but the cheapest path in the in-
terior is strictly away from the boundary. Now at the point , the interior
path travels along the boundary, but the unique cheapest path along the boundary
has 0. This means that the boundary path is cheaper than the interior path
at , since the boundary path is unique, and is of minimal cost over a set
of paths that includes the cheapest interior path. By the continuity of all relevant
functions with respect to all parameters, the boundary path is cheaper than the in-
terior path for all that are sufficiently near .

Figure 15.23. All the pictured paths have the same cost at .

Similarly, at , the boundary path spends no time on the boundary,
hence has the same cost as an interior path along the boundary. But for ,
the interior path along the boundary is more expensive than the cheapest path in
the interior. Therefore we have demonstrated that the interior path is cheapest for
all sufficiently near . Hence by continuity there are points

so that the interior and boundary paths have the same cost whenever
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Definition 15.25.

Theorem 15.26.
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λ µ / λ ρ µ λ λ
, ( . )

ρ
µ

λ λ
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ρ

.

Define a change of measure by

where the constants and are defined within the theorems below.

Define the path , and the time by

where the change of measure is given by

Then is in the interior and is the unique optimal path for the variational prob-
lem, with optimal change of measure given by and , for the following values
of the parameters:

, and moreover, for the interior path is the unique cheap-
est path, and for the boundary path is the unique cheapest path. At

there is no uniqueness. Indeed, any path that travels along the boundary
for a while, then goes in a direction parallel to the cheapest interior path, will have
exactly the same cost. We also have the following

We don’t know how to calculate except by comparing the costs for the in-
terior and boundary paths numerically and finding when they are equal.
This completes our calculations for the simple preemptive priority model. We

collect the results on the extremal paths in the form of theorems. The implications
to questions concerning probabilities of events are discussed and proved in §15.5.
Recall from (15.21), (15.31) and the proof of (iii), Lemma 15.14 that

1

1

1

In the four theorems below we consider the variational problem (15.11), where
is defined through (15.12) and (15.22). Recall that a path is called an interior
path if 0 for 0, and a boundary path if 0 for 0. We shall
refer to the following standard changes of measure.

0

15 35
1 1

15 36

15 37
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( ) <

(i) and ,
(ii) and , where and is the smallest

value of for which has the same cost as the path of Theorem 15.27.

Define the path , and the time by
where and with the change of

measure given by

and solves

Then is on the boundary, , and is the unique optimal path for the
variational problem, with optimal change of measure given by and , for the
following values of the parameters.
(i) and , where in this case ,
(ii) and ,
(iii) and , where and is the largest

value of for which has the same cost as the path of Theorem 15.26.

Define the path , and the time by
where and with the change of measure given by

and

Then is on the boundary, , and is the unique optimal path for the
variational problem, with optimal change of measure given by and whenever

and . The interval is not empty, and is a single
point if and only if . In this last case the definitions of the paths and
optimal rates in Theorems 15.26–15.28 agree.

Define and as in Theorem 15.26(ii) and 15.27(iii), re-
spectively. If then for the critical path is not unique. Any
path that follows the path of Theorem 15.27 for and then
proceeds parallel to the path of Theorem 15.26 is optimal. The value of can be
calculated from that of either the boundary path or the interior path.
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For the preemptive priority model, with , , and defined
in §15.3, for each , uniformly over ,

For the preemptive priority model, with defined in §15.3,

For the preemptive priority model, with , , and defined
in §15.3, for each we have

[Recall that for .]

Now that we know the lowest cost path from 0 to , we expect that several state-
ments about the probabilistic behavior of the preemptive priority system should
hold. We justify these statements in §15.5; for now, you should look at them
as natural consequences of large deviations theory and Freidlin-Wentzell theory,
even if you suspect that we haven’t shown that either of these theories apply to
the model.
Let denote the first time .

0 : 1 1 1

lim
log

1

lim
1
log 15 42

0

lim sup 1 15 43

0 0

As a simple consequence of Theorem 15.31, we can state that

lim 1

These three theorems contain nearly all the probabilistic insight we have about
the preemptive priority model. You might wish to formulate another theorem us-
ing the results of §7.4 to the meaning of the twisted rates.

Now that we have analyzed the simple priority queue, we can immediately answer
some questions about the equivalent two-queuemodel. Instead of asking about the
distribution of conditioned on 1, we can investigate the distribution
of given that and conversely the distribution of given that
. These will all follow without any calculation or justification, simply from the
analysis and justification of the first part of this chapter.
The new model has one of two forms. Either and (instead

of a boundary at we have boundaries at 1 and 1) or the queues
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λ < ε

have no upper boundaries. The results will be the same for both systems. We first
describe the results and arguments for the bounded system.
Consider the distribution of given that . We know that the larger we

make , the larger the cost; this comes from (15.12) and (15.13), where we know
is increasing in for 0 since is convex and 0 only at

0. We can therefore say that

0 15 44

Furthermore, we know that the sample path for to take is

0 for 0

where
1

and

and is given in Theorem 15.27 or 15.28 depending on whether or
respectively.

The question of the distribution of given that is almost as easy to
answer. The process is simply an 1 queue, so its upcrossings to the level
were completely analyzed in Chapter 11. During the excursion of , there is no

advantage to be had by queue 2 behaving any differently from normal, but there
would be a cost for it to do so [that is, by (15.12) and (15.13), we make 0
only at ]. Therefore,

15 45

where
1

Show that (15.44) and (15.45) are correct, by filling in the details
of the calculations that we outlined.

What other conclusions can you draw about these queues with-
out any further calculation? (Consider , consider

what Level 1 (§7.4) has to say about these queues, and consider replacing the
conditioning by .)

When the state space is not bounded, we can still analyze the asymptotic corre-
lations between and . That is, we consider the simple priority model
without a bound on the number of customers allowed in the system. The answers
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Suppose that we have a jump Markov process on with two
flat boundaries that meet at a point . Suppose that Assumptions 8.8 (irreducibil-
ity) and 8.9 (Lipschitz continuity) hold (except that we allow the point to be a
point of discontinuity for the rates on the boundary), that the conclusion of Kurtz’s

don’t change at all from the ones we have already calculated. Not only that, but
the conditioning on can be changed to and the theorems again hold
without any changes. The only new element in the justification of the calculations
is the estimate on the positive recurrence of the process .

In this section we justify our calculations by showing that the Freidlin-Wentzell
theory applies to our process. We first need to prove the large deviations principle
for processes in two dimensions with corners. This is not difficult based on the
theory of Chapter 8, as we now demonstrate. Let us suppose that the only corner
is at . We suppose that there are jump directions and associated rates
for 1 2 3 4, where 1 is the corner point , 2 is one boundary,

3 is another boundary, and 4 is the interior of the space. We suppose
that the log are bounded and Lipschitz continuous for 2 3 4. We
define the local rate function by either of the following two formulae at

:

(i) sup max 1

(ii) inf inf log

where

: 0 1

and

: 0 0

When the rate function is given by that for the flat boundary pro-
cess, which we know has . We show below that 0

0 . Therefore we can define

15 46

unambiguously, since the only ambiguity is at 0, which is a set of
measure zero in .
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Theorem (Theorem 5.3) holds, and that the point is attracting for . Then
the large deviations principle holds with good rate function .

(ii)
(ii)

(i)

The assumption that the process has two flat boundaries that meet at
a point means that we assume that the dynamics of the process do not allow
for jumps beyond either boundary (Assumption 8.8 for directions normal to each
boundary guarantees this, for example).

. The lower bound holds almost trivially. We simply have to find a lower
bound on the probability that a path stays near for long periods of time. By the
assumption that is attracting, we can see that the lower bound rate function
is equal to zero [i.e., 0 0 where is defined by ], since we do not need
to change measure for the process to stay near .

The proof of the upper bound is unchanged, since it did not rely on any smooth-
ness of the boundary. Therefore we can say that the upper bound holds with rate
function given by form . The only thing we need to check is the equivalence
of 0 and 0 in this new setting. By examining the probability of a
neighborhood of the path we can infer that 0 0, since

0 lim
1

log 0 15 47

Nevertheless, here is a direct proof that 0 0. We claim that there is no
direction such that

0 for 1 4 15 48

This follows from the assumption that starting from any point near .
Combine this with the observation that

1 is convex in

and that

1 15 49

when 0 easily gives the result 0 0 (just look where a maximum
might occur).

Prove that there is no direction such that

0 for 1 4

We have justified the large deviations principle for processes with a corner only
at . The preemptive priority process has corners where the line intersects the
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Exercise 15.37.

Lemma 15.38.

Proof

E
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x t

z t
z t

z

e

C T
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n n n x x r n

z T r T
C
n

e

C

C n

There is a constant such that the following holds. Given
and any path with , for any , there is an

such that if then for any with ,

coordinate axes, too. We will not show that the large deviations principle holds
for the preemptive priority process for paths that touch these corners. We simply
make the following observations:

1. Any path that leads to these corners also touches , since the corners are con-
tained in .

2. Neither corner is absorbing.
3. Kurtz’s Theorem holds for the process starting at either corner (see Exer-

cise 15.37).
Therefore upcrossings to don’t depend on the large deviations principle hold-

ing for this process at those points. Furthermore, items 2 and 3 show that steady-
state calculations don’t depend on the principle, either, since with high probability
the process leaves neighborhoods of those points quickly.

In order to show that the Freidlin-Wentzell theory applies to the preemptive pri-
ority model, we would like to use Theorem 6.77. That theorem requires us to have
a large deviations principle (which we just established, at least enough for that
theorem’s need). It also requires Kurtz’s Theorem for our process, and that 0 is a
globally attracting point. This is simple enough that we leave it as an exercise.

Show that 0 from any starting point, and show further
that Kurtz’s Theorem holds for the PP process. Hint: the only places you need to
examine are the corners. Near each corner each coordinate direction grows
more slowly than it does on a boundary away from the corner.

We show positive recurrence of by referring to the general recurrence
lemma for two-dimensional systems, Lemma 16.14. [The idea is that must
follow down to 0 relatively quickly, and with overwhelming probability, from
any starting point. This is very nearly positive recurrence.]

We used an assumption in proving Theorem 6.77 that is simply not true for this
process, or indeed for the other processes we consider in this chapter. Namely, we
assumed that the positive cone spanned by the is all of . Therefore we need
to extend the reasoning leading to Theorem 6.77 in order to be able to apply the
Freidlin-Wentzell theory. The result we need is contained in the following lemma.

0
0 0

0 1

Note that we can take 2 for the preemptive priority model. We stated the
lemma in greater generality so that it may be used for other models.

. The problem is seeing that the endpoint can be reached to within ,
since we have already proved the large deviations lower bound for this process.
The reason we cannot simply use the argument leading to Theorem 11.4 is that the
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Let be a positive recurrent process on a subset of the

integer lattice , satisfying a large deviations principle, and let be a subset

positive cone spanned by the in the interior of the state space is not all of —
there are no low-priority services. Theorem 11.4 applies to the first coordinate of

(since that is just an 1 queue). For the second coordinate, consider
the final portion of the path from the last time it leaves the axis 0
[or time zero if there is no time when 0] until time ; this is the portion
of time during which cannot decrease (since ). We simply have
to ensure that during this time, and also ensure that

2 . We can accomplish this using the same idea as in the proof of
the lower bound, Lemmas 8.81 and 8.82: if the path has small slope in the
direction (the second coordinate direction), then the cost function is nearly that
of a slope zero (constant) function, which is the cost of having no jumps at all in the
low-priority queue. Therefore we can (with almost no cost) keep the low-priority
queue at the level if it ever reaches that level, since the slope of the curve

would have to be small by the large deviations lower bound from the time
reaches that level. Furthermore, if by time the process has not reached

the level, then with cost we can force the process to that level.

We claim that the arguments we have given thus far have established Theo-
rem 15.30. There is at least one more item that needs to be cleared up before we
are finished with the proofs of Theorems 15.31 and 15.32. We need to check that
the boundary condition is satisfied for Theorem 6.92; namely, the assumption that
“ intersects at exactly one point even when extended beyond time zero by
the path [this is equivalent to the assumption that for for a
unique 0 ].” By (15.4), the drift is directed toward when

15 50

So the question becomes, Is it possible that (15.50) holds when the minimal cost
path intersects at a point other than 0 1 ? (Then the cheapest path would
travel along , and so all the points along this path would have the same value
of , and hence asymptotically the same probability. This would mean that we
could not find a unique cheapest point on the boundary.) The cheapest path is in
the interior only when (and sometimes not even then, if ). But
if then

15 51

so the drift in the interior is away from the boundary . Therefore, the cheapest
path from 0 to always hits at a unique point.

The final point to clear up is the fact that is not a smooth open set, as was
assumed for Theorem 6.92. This is, in fact, irrelevant for our process, since the
process can only jump one step at a time, so cannot tell if the set has an interior
or not. Nevertheless, here is a formal argument why we can condition on a “thin”
set such as , or (for this and other processes) on sets such as 1.
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of . Suppose that for each ,

[recall , where we assume that
there exists a unique point for every starting point ]. Sup-
pose further that

and suppose that there is a unique with

Then for every ,

Furthermore, if there exist constants and and a function as
, such that

then

There exists a constant and an such that for any
and any ,

15 52

inf : 0 0
lim 0

15 53

inf 15 54

0

lim 1 15 55

15 56

lim 15 57

Prove Theorem 15.39.

The preemptive priority queue satisfies the hypotheses of Theorem 15.39 [even
(15.56), since the process is bounded!]. This completes the justification of Theo-
rems 15.31 and 15.32 for the preemptive priority queue and the set .

Next we examine the justification of our results for the extended model, where
there are two queues that are either bounded by or are unbounded. For the un-
bounded queues we need exactly one more lemma: we need to see that (15.56)
holds in order to use Theorem 15.39.

0
1

15 58

Prove Lemma 15.41. Hint: Kurtz’s Theorem applies to the pro-
cess.
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Section 15.6. SERVE THE LONGEST QUEUE

( )

( , ) λ ( ) λ

( , ) λ ( ) λ

( , ) µ ( )
µ >
µ/ >

( , ) µ ( )
µ <
µ/ >

( )( ) / /
λ µ

µ > λ

The process is defined by the following rates and direc-
tions:

Jump direction Jump rate Interpretation
Arrival to queue 1
Arrival to queue 2

if
if
otherwise

Departure from queue 1

if
if
otherwise

Departure from queue 2

Suppose that there are two lines in which people can wait for a service, such as
tellers’ lines in a bank. The lines are such that no one can see the lines before
entering the system, or change lines after joining the system. As a result, arrival
rates to the queues are equal. There is only one server who serves the longer queue
unless queue sizes are equal, in which case the server makes an arbitrary decision
(flips a coin). The server interrupts service if the line being served becomes shorter
than the other.

Figure 15.43. Serve the longer queue.

We formalize this system as follows:

1 0
0 1

1 0 2 0
0

0 1 2 0
0

Clearly, the total number in the system is an 1 queue with
arrival rate 2 and service rate . Therefore we impose the stability condition

2 .
The first thing you’ll probably notice about this system is that it doesn’t fall

under our theory of flat boundary processes: the “boundary” at can be
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15.7. Most Probable Behavior—SL
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penetrated. We’d ask you to reserve judgment for now. Pretend that a large devi-
ations principle exists for this process, and continue with the program as outlined
in the Introduction to the Applications. The justification will appear shortly.

It is easy to find , even though the process does not fall under the do-
main of applicability of our theorems to date (since the “boundary” at is
nonstandard). In the regions and , the process is constant coeffi-
cient, and clearly Kurtz’s Theorem applies. To justify our calculation on the line

, see Exercise 15.51 below. For now, we calculate formally. In the
region where ,

if
if . 15 59

Since 2 , we have 0 where 1 1 . Now what happens
when ? If exists at all it must stay on the line once it gets there,
since it approaches the line whenever it is not on it. But since the total number in
the system is an 1 queue, we have

2 15 60

We have then completely specified once we insist that 0 when
0. Therefore we have found that, with

15 61

as the switching time, we have

for 0 if
for 0 if
2 2 for ,

where we take 0 and if . In Exercise 15.51 below, you
will prove that this satisfies the conclusion of Kurtz’s Theorem (note that we
have only made a heuristic justification of this theorem along the line ).
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We wish to examine how large is likely to be when is large. Our main
result for this system is the following.

2 4
4

0 0
0 4
0 4

4 0

lim sup 0 1 1

lim

In order to prove this result, we should first prove that the large deviations prin-
ciple holds for our process. Then we should examine

inf : 0 0 1

Since the process is constant coefficient, except for the discontinuity at ,
we know that all extremals will be straight lines, or will consist of a straight seg-
ment along with another segment interior to or .
(You can easily see that there are no other possibilities for minimal paths made of
straight-line segments: if a path leaves the point 0 along a straight-line segment
away from , then it cannot turn around and hit this boundary at a later
time. Furthermore, the “boundaries” at 0 and 0 are discontinuities
in terms of the jump rates for this model—see Figure 15.43.) Then we should
consider the endpoint, 1 , and we would obtain Theorem 15.45.

Before we carry out this program, let’s pause to think of a trick. Suppose
that approaches in such a way that during the approach.
Then is an 1 queue, and is a Poisson process. We know that

1 queues grow by having the arrival and service rates interchange (see The-
orem 11.18). That is,

0 15 62

and . Is this story consistent? That is, is during this in-
terval? By the stability assumption, 2 , so ; therefore consistency
holds. The probability of reaching is about exp log (see §11.2).
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So we obtain that reaches , and then is about , with probability
(that is, the rate function associated with this scenario is log ).

But what if is not always longer than during the excursion? What if
the two queues get long together? In that case we do not know who gets served at
any particular time, but we know that the system as a whole needs to have about
2 customers for . Now the system as a whole is an 1 queue with
arrival rate 2 and service rate . Therefore, if this is the most likely scenario, we
would have

2
4 15 63

Which of these two modes is more probable? We have to compare (15.63) with
. We see that if 4 1 then it is more likely that ; if 4

1 then it is more like that . When 4 1 we have multiple paths
with the same rate function, and our methods do not provide estimates on

the distribution of given .

The preceding discussion should convince all but the most skeptical investigator.
For that person, we now carry out the exact calculations and proofs. We begin with
a proof of the large deviations principle for our process. We then prove that the
Freidlin-Wentzell theory applies (this is a triviality; once we have the elements in
place, we argue as for Theorem 6.92). We end with a justification of our solution
of the variational problem. Remark 15.10 is relevant to our discussion; you might
wish to review it before continuing.

We obtain the large deviations principle for by a change of coordinates.
Let

15 64

15 65

Then is a Markov process with transition rates depicted in Figure 15.46 be-
low. Clearly, is a Markov process with a flat boundary and smooth (actually
constant) transition rates for 0 (there is a singularity at 0, but we
take care of that problem separately). We use for the scaled process derived
from in the same manner that is derived from .

Let denote the boundary . The process is obtained from by
a continuous mapping. Define a pointwise map and a mapping of functions

15 66

In the notation of Chapter 8, was denoted and is the direction perpendicular
to the boundary. Note that the sample paths of cannot jump across : that is, if
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Exercise 15.47. R

Exercise 15.48.
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is on one side and is on anther side of the boundary, with , then
necessarily for some . So, define

[0 ] : does not jump across

Figure 15.46. Transitions in the variable .

is a continuous mapping from [0 ] to [0 ] and from
[0 ] to [0 ].

The set is closed in [0 ]. If is a closed set in
[0 ] then : is closed in [0 ]. Hint: take a con-

verging subsequence 1 , with in . Use Theorem A.57 to
show that the set

: for some 1

is precompact, hence 1 is precompact. Now take a converging subse-
quence and use continuity of .

Since is continuous, we could deduce a large deviations principle for
from a large deviations principle for by the contraction principle, Theorem
2.13. We propose to do exactly the opposite: derive the large deviations principle
for from the large deviations principle for . The reason we can do this
is that the mapping from to is nearly invertible on : the only ambiguity
in the inverse map is when a path touches the boundary 0 (corresponding
to ). But then the idea is to count all the paths corresponding to a
particular path as equally likely, and since there aren’t too many such paths,
we just take the rate function for as the corresponding rate function for .
Now for the statement and proof.
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R

R

Theorem 15.50.

Proof
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Define the local rate function for the process as in Chapter 8:

sup 0 or 0

sup max
0 and

0 or 0
0 0

otherwise,

2 1

2 1 1

We define the local rate function for the process in the usual way, via (5.2)–
(5.4), for all points not on the boundary; that is, either or . On the
boundary , , we use the rate implied by the function for the
process. That is, 2 0 2 0 ; an explicit expression
is given in (15.78) below.

Obtain from using a transformation of coordinates. Con-
clude that if a continuous path crosses the boundary at most a countable
number of times, then (the rate function is defined in
the usual way, see Theorem 15.50 below). Hint: becomes linear if restricted
to the correct set. Use Exercise 5.11. For the second part justify ignoring points
where is not differentiable, and use symmetry.

. To establish the lower bound, we have to prove that any neighborhood of
a function has probability at least exp . So fix a continuous
function and 0 and, to fix the ideas, assume that 0 0 2 (exactly
the same arguments apply if the roles of and are reversed, or if and are
equal). Recall that denotes the boundary : 0 and that
is the (smallest Euclidean) distance between a point and the set . Define a set of
times in a way reminiscent of a Freidlin-Wentzell construction:

0 15 67

inf : 15 68

inf : 2 15 69

0 15 70

sup : 2 15 71
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Then since is continuous, are the times hits the bound-
ary after being at least 2 away, and is the first time after hitting a boundary
that escapes an 2 neighborhood of the boundary, and are the last times be-
fore that is an 2 distance away from the boundary.

Let us show that, since , there are only a finite number of . By
Lemma 5.17, uniformly as , and hence there is a so
that if then . Since the cheapest paths in the interior are
straight lines, in an interval of length there can be at most cycles from

to and back with a total cost of up to . By repeating the argument
with 2 we conclude that there are at most a countable number of points
where crosses [that is, points where either is on one side for all small
times before , or on one side for all small times after ]. Therefore, Exercise 15.49
implies that .

We are trying to establish a lower bound for , where 0 and

sup 15 72

By definition of and by continuity of , there is a constant 4 0 so that

min inf 15 73

Consider the set of paths satisfying the following conditions: for 0,
(i) During the interval , we have .

(ii) During the interval , we have .
(iii) At some point during the interval , hits the boundary .
(iv) , and
(v) after the process stays within of .

Clearly [the stipulation (iii) is needed so that, even if exits the 2
neighborhood of to the same side it entered from, is guaranteed to hit the
boundary]. Let now be the path that agrees with until and, between
and , is the reflection of across . That is, leaves in a direction opposite
to and continues as its mirror image. Since our process is symmetric with respect
to such reflection and since was required to hit , we have ,
where is defined through (i)–(v) and differs from only in that replaces
in (iv)–(v). Therefore

1
2

15 74

Repeating exactly the same argument for 1 1 we introduce a
factor of 1 2 each time we invoke symmetry, and obtain a chain of inequalities.
The final set of paths we consider allows the process to follow, on each interval
[ ], either or its mirror image. But, since , this is equivalent to
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requiring that follows ! Or, more precisely (and reducing the set some
more),

2
sup

max inf 0

2
sup

max inf 0

where the change in the conditioning is justified by symmetry. From Lemma 6.36
applied to the process , we obtain a lower bound for the last probability so
that

2 sup

for some positive and . However, for this probability we have a large devia-
tions principle and, since is arbitrary, we conclude that

lim inf
1

log sup 15 75

The upper bound is easier to prove. Recall from Exercises 15.47–15.48 that
is continuous and is closed. For any closed set ,

However, by symmetry, for any set we have

15 76

But satisfies a large deviations principle with rate function , and
we can apply the upper bound since, by Exercise 15.48, is closed. The
upper bound now follows from Exercise 15.49.

Finally, we show that is a good rate function. Since is lower semicon-
tinuous and is continuous, is lower semicontinuous, and it is clearly non-
negative. The level sets of are compact since

: :

The first set on the right is compact by Theorem 8.16, and the second is closed by
Exercise 15.48.
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Exercise 15.52.

Exercise 15.53.
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Prove that Kurtz’s Theorem holds for . Hint: use the map-
ping as in the previous proof—what does Kurtz’s Theorem for imply about

?

Show that 0 is a removable discontinuity in the sense of Freidlin
and Wentzell, by showing that

sup 0

as , and that

sup

where 0 as 0.

This essentially proves the applicability of Freidlin-Wentzell theory for the cal-
culation of steady-state probabilities, and for the calculation of the way in which
unlikely events occur.

We can calculate the probability of traveling at rate along the boundary via
which, in this case, takes the form

0 0 sup max 2 1 1

1 1 1 15 77

This can be evaluated explicitly: in Exercise 15.53 below we obtain

0 0 sup 2 1 1

log
8

4
2 8

15 78

where the last equality follows since the cost function has been reduced to that of
an 1 queue with arrival rate 2 and service rate .

Derive (15.78). Hint: for any we minimize the “maximum”
term when 0, since the two terms in in (15.77) are equal at 0, the
first is increasing in while the second is decreasing for 0.

We have thus reduced the problem offinding the cheapest path that travels along
the boundary to that of finding the cheapest way for an 1 queue to fill. This
is, of course, when the arrival and service rates interchange. So we have

2 0 2 2 2 2 15 79
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Exercise 15.54.

Exercise 15.55.
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The problem of finding when 1 is now the problem of finding when
2; this is clearly when

2
2

The cost of this path is
2 log

2
15 80

Perform the calculations that give (15.80).

We must also concern ourselves with paths that travel strictly in the interior of
the state space. In the region , we now show that the cheapest way to get
to the line 1 is for the arrival and service rates for to interchange, leaving
the rates for unchanged. To prove this, compare the preemptive priority queue
of Figure 15.1 to our system, depicted in Figure 15.43. Since the jumps and rates
agree for , the calculation leading to (15.12) apply, and we obtain the
following form of the rate function in this region:

15 81

where corresponds to an 1 queue with arrival rate and service rate ,
and corresponds to a Poisson process with rate . The cheapest way of getting
from 0 to the line 1 involves minimizing ; hence we may freely
minimize over , and we know that 0 only when . Furthermore,
minimizing is the same as minimizing the cost of an 1 queue to
fill; by Theorem 11.15 this has cost

log

Furthermore, in the optimal mode of travel we have (by, e.g., Theorem 11.18)

0
1

15 82

We must check that this path actually lies in the interior of the state space; that is,
we have to see that . Since 2 , we have , so does
indeed lie in the region .

There is also a cheapest path in the region .
Show that there is another mode for to reach one with

throughout. Show that the cost of this path is high compared to the other two
modes. Hint: write the cost function as in (15.81), where corresponds to a Pois-
son process, and corresponds to an 1 queue. Since the path must cross

1 its cost, by symmetry, must be higher.

We have demonstrated that there are at least two critical paths from the point
0 to the line 1: one where , and one where .
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These paths have costs given by 2 log 2 and log respectively.
Therefore, for 4 , the first path is cheaper (more likely), whereas for 4
the second path is cheaper. When 4 both paths have the same cost.

Now let’s make sure that we have considered all possible critical paths. Since
the process is constant coefficient in the regions and , we know
that the critical paths must consist of straight-line segments. All possibilities are
sketched in Figure 15.56.

Figure 15.56. The possible critical paths.

The point represents the path that goes from 0 0 to 1 with cost
log in the interior defined in (15.82). The point represents the minimum
cost path that travels along the boundary, defined in (15.79). Its cost is given
in (15.80) as 2 log 2 . The point represents the path you calculated in Ex-
ercise 15.55, where .

Since the paths are straight lines and the process is constant-coefficient in each
region, the cost incurred per unit time along each critical path is , a con-
stant. Therefore there is a constant cost per unit distance traveled toward 1.
Now if the costs of and are the same (that is, if 4 ), then any path (such
as 0— in Figure 15.56) that follows for a while and then travels parallel to
thereafter will have the same cost. Similar considerations apply to constructing
from and , although and are never minimal paths, by Exercise 15.55.
Again, the case where is a minimal path is exactly the critical case 4
derived above. This finishes the proof of Theorem 15.45.

Leo Flatto [Fl] has derived the steady state of this system; indeed, his work mo-
tivated this study. He found that when 4 , the distribution of conditioned
on 1 is asymptotically (as ) on 1 . Our interpre-
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15.10. Join the Shortest Queue
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The process is defined by the following rates and direc-
tions:
Jump direction Jump rate Interpretation

Arrivals to queue one

Arrivals to queue

Departure from queue one

Departure from queue .

Our standard scaling (5.1) is obtained as

tation is that all paths have exactly the same probability, so all their endpoints
should be equally likely. But of course we cannot prove his result using our meth-
ods.

Suppose that a Poisson stream of customers arrives to a system of two queues.
The queues have statistically identical independent exponential servers. Ar-
riving customers join the shorter queue, flip a 50/50 coin if the queues are the
same length, and cannot switch lines once they join. The two-dimensional pro-
cess is Markov with the following transition diagram.

Figure 15.57. Transition diagram for join the shorter queue.
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Exercise 15.60.

Exercise 15.61.
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µ

( ) ( )

Although does not fall under the domain of flat boundary theory, just as
in §15.9 a simple transformation of the state space will enable us to calculate (and
prove) limit laws for and the large deviations principle for . We use
the transformations and defined in (15.66), §15.9, and let . In the
notation of Chapter 8, was denoted and is the direction perpendicular to the
boundary.

Figure 15.59. The transformed state space.

Then it is a simple matter to calculate the equation of , the fluid limit for the
process (as in §15.9, is the scaled process derived from ):

if 0 and
2 if 0 and
2 if 0
2 0 if 0 and 0

0 if 0.

15 83

Here is how we derive (15.83): the computations are left to Exercise 15.60 below.
In the interior of the state space, where 0, the third line of (15.83)
is just (5.7), which clearly follows from Theorem 5.3. Depending on 0 and
whether or not , this path may lead to the line 0 or to the line
(or it may lead directly to 0, which we analyze below). The line will be
reached by only if . Once hits either of the boundaries, we calculate
its subsequent evolution by Exercise 8.13. This leads to the first and fourth lines
of (15.83). Looking at the solutions of (15.83) shows that 0 if and only
if 2 . We could have guessed this stability condition—the total number of
customers in the system is pretty much the same as an 1 queue with arrival
rate and service rate 2 . The only difference is when one of the queues is empty:
then the rate at which the system empties may only be .

Prove that (15.83) is the most likely behavior away from 0. Hint:
this is a local result, so the theory of Chapter 8 applies away from 0.

Derive from .
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Upcrossings and steady state.

Theorem 15.62.

Note:

Proof 1

Proof 2

Now that we know the likely behavior of , let’s examine its unlikely behav-
ior. Specifically, we examine the distribution of conditioned on .
By Theorem 6.89 we expect to be at the point that minimizes over

: 1 . Recall that is defined as

inf

where is the set of paths that start at 0 0 and end at a point with
1. But notice that any path from 0 to 1 must pass through the point

1 1 , since upcrossings to can only occur at 1 or .
Therefore we are led to guess the following

lim 1 1

0

lim 1 1 1

This would follow, except we have not proven a large deviations princi-
ple for processes with discontinuities that are not flat boundaries, and have not
checked that the conditions (specifically, the recurrence condition) of Theorem
6.89 hold. However, note that we did not even need to a variational prob-
lem, let alone one, to conjecture this theorem.

. Theorem 15.35 shows that satisfies a large deviations principle.
Now we need to show that it is positive recurrent. This follows from Lemma
16.14; therefore, Theorem 15.62 will be proved once we can show that the min-
imum cost point along the line 1 is the point 1 1 . But this is easy: all
paths that cross up must go through this point, and immediately heads back
to 0 from 1 1 . This means that every other point on the line has strictly greater
cost function . (You should check that the statements we are making about the
process also hold for —checking this is almost trivial from the defi-
nition of .) There is the usual argument to be made about conditioning on the
line 1, namely, the line is not compact and is not the closure of its interior.
See Lemma 15.38 (or Lemma 16.13 for a more general method that doesn’t apply
to this process since the don’t span ) for the way to get around this minor
difficulty.

. (Sketch) Since we do not need the full power of a large deviations prin-
ciple to ascertain where the upcrossing occurs, we have some hope of making a
proof that does not rely on the large deviations principle. This proof generalizes
to higher dimensions and to more processes than the previous proof. Examine the
proof of Theorem (6.89). All that is used is
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Exercise 15.63.

Extensions:

Section 15.10. JOIN THE SHORTEST QUEUE

' '
|'|

≥

' = − − ≤ ≤ =
−

'

= + = − ·

= | − | ≈

' '
♠

+

' '
' 3=

' '

M M

r t x t
x

x n

r t t t T

u t u t
M M

u t x x t t

u t x x

r t u t

x u
u x x

x x
u z

/ /

λ

( ) ( )

( ) µ
λ
, µ

λ

µ λ/
.

( ) ( )
/ / λ µ

( ) ( ) ( ) ( µ λ) .

( ) .

( ) ( )

λ < µ µ

µ

λ < µ

µ µ >
<

1. Upcrossings are rare. (We know this since the total queue length is like a sta-
ble 1 queue. We can also provide a supermartingale that shows pos-
itive recurrence; this, combined with the next item, means that upcrossings
must be rare.)

2. The process has bounded speed (the are bounded, not necessarily contin-
uous).

3. We know where upcrossings occur most likely.
4. The process is ergodic (positive recurrent). This is straightforward. As men-

tioned in point 1, there is a simple supermartingale that shows this: the pro-
cess , the Euclidean distance between 0 and , is a supermartingale if
the stability condition holds and if is not too small (this is an easy calcu-
lation).

Show that, for the problem of finding when , the optimal
path is

2 2
for 0

1
2

[This is pretty obvious from the transition diagram for : we see that
looks like an 1 queue with arrival rate and service rate 2 , so that most
likely upcrossings are made by the arrival and service rates switching:

2

Also, during this excursion,

0

This gives the stated .] The exercise is to write the cost function for ,
and solve the appropriate variational problem.

1. The queues may have different service rates. Nothing changes so long as we
have . That is, the conclusion of Theorem 15.62 holds.

2. There can be any number of queues. Each queue has its own service rate
. Customers always join the shortest queue, choosing uniformly at random

among all shortest queues at the time of their arrival. We assume the stability
condition .

Proof 1 breaks down for these extensions, but proof 2 extends verbatim. The
reasons that proof 1 breaks down are manifold. We don’t have a large deviations
principle for processes with discontinuities along the boundary such as an edge.
Furthermore, the mapping from to no longer gives a nice mapping of the rates.
That is, consider the jump rates for when and ; then consider
the jump rates when . Since this mapping is no longer one-to-one, we
cannot use a large deviations principle for to establish one for .
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Chapter 15. PRIORITY QUEUES

However, there is nothing at all wrong with proof 2. We obtain for each 0,

lim
1

1 1 1

Costas Courcoubetis introduced us to the simple priority queue, and asked the
questions that led to the analysis of this chapter. Leo Flatto introduced us to the
other models, and obtained the exact steady state distributions of for both
of them. He used the complex variables methods of Malyshev, so his techniques
would not seem to generalize to more than two queues. Of course, his answers are
more accurate than ours since they are exact, not asymptotic. He also obtained all
the asymptotics we did (and more!), except for the sample path properties.

Leo pointed out an interesting correspondence between the JSQ model,
and the SLQ model. Suppose that there are only spaces in each queue
in either of the models. Then consider the number of empty slots in each queue.
The join the shorter queue model’s spaces are pathwise the same as the serve the
longer queue model’s customers, and vice-versa. How can you reconcile this fact
with our calculations showing that the upcrossings (and downcrossings) of the two
models are entirely different?

The derivation of a large deviations principle from a principle for a continuous
transformation of the process of interest is called “inverse contraction:” cf. [DZ,
Theorem 4.2.4]. However, the usual hypotheses do not hold in our case, since our
transformations are not invertible (not even on their range).

Dupuis and Ellis [DE2] prove large deviations principles for processes with
many types of discontinuities. Their method does not quite apply to our exam-
ples, though, since they essentially require that the cone spanned by the is
in each region where the process has smooth jump rates, which clearly does not
hold for JSQ or SLQ.
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Chapter 16

The Flatto-Hahn-Wright model

Suppose that there are two bathrooms , one for men and one for women. Each
has room for exactly one client at a time. People arrive at the bathrooms either as
individuals, or sometimes a (heterosexual) couple causes a simultaneous arrival
at each bathroom. The times that people spend in each facility are independent
and exponentially distributed, but the different sexes may have different averages.
We assume that each type of arrival stream forms an independent Poisson process,
and that the two lines (which are 1 queues when viewed in isolation) have
steady-state distributions; that is, the total arrival rate at each bathroom is less than
its associated service rate. Now for the question: If we observe that a large number
( ) of men are waiting for their convenience, what can we infer about the number
of women waiting?

Figure 16.1. The basic Flatto-Hahn-Wright model.

While we have given the formulation of the problem that most appeals to us,
there is a more sober and general question that is equivalent to the onewe have just
asked. Namely, when a subsystem goes into an unlikely state, what can we infer
about the rest of the system? The large deviations point of view is particularly well
suited to answering this question. We simply look at the cheapest twisted measure
(associatedwith a cheapest path ; see §7.4) that would cause the subsystem to go
into the unlikely state, and see how long that twist would have to hold for it to do
so (that is, what is the time associatedwith ?). Thenwe see what the effect of
holding that twist for that long would be on the rest of the system. We approach
this general problem through a specific example partly because we don’t know
the most general formulation of the question that is amenable to our analysis, and
partly because we feel that most of the ideas are contained in our simple example.
This model was posed by Wright [Wr] as a generalization of an earlier model

of Flatto and Hahn [FH]. The original motivation was to study asymptotic corre-
lations among parallel processors. That is, if jobs arrive at a machine that consists

American usage. British “W.C.” or lavatory; “toilet” elsewhere.
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The Markov process is defined through the following jump
directions and rates:
Jump direction Jump rate Interpretation

single man arrives
single woman arrives
couple arrives

man leaves

woman leaves.

of two processors, with some jobs requiring attention from both processors, what
can you say about the backlog at one processor given that you know the other pro-
cessor has a large backlog?
Let us now define the model’s parameters—jump rates and directions.

1 0
0 1
1 1

1 0 0
0 0

0 1 0
0 0

Figure 16.3. Transition diagram for the Flatto-Hahn-Wright model.

We are interested in the steady-state distribution of , conditioned on
either or . We will show that both problems reduce to evalu-
ating the variational problem

min

0 : 0 0 1
16 1

where the rate function is defined as follows.

sup
16 2
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Assume the stability condition

For all ,

The conclusions hold if the conditioning “ ” is replaced by “ .”

provided correspond to a path that stays in the positive quadrant (including
the boundary), that is both components of are nonnegative, and if 0 then

0. We set otherwise. As in Theorem 8.19,

lim max 1

which takes the usual form (5.4) whenever 0 1 2.
It should be intuitive, or at least believable, that the way a long line forms for the

men’s room is that the arrival rate of men must be above average for a while, and
simultaneously the men must be taking an unusually long time to do their busi-
ness. Now if more men than usual are arriving, then more women than usual are
probably arriving too, since we expect a certain fraction of the men to arrive with
partners. Thus the line for the women’s room should be longer than usual when
the line for the men’s room is. This argument can be made quite precise, even
more than we will do here; for details, see [SW].
We approach the steady-state distribution of the process using the ideas of

Freidlin and Wentzell, as presented in Chapter 6. We need to extend the analy-
sis a little bit since the process is not on a compact state space. Let (re-
spectively ) denote the steady-state distribution (expectation) for the process.
Define

max 0 16 3

Our main result is the following theorem.

16 4

0

lim 1 16 5

lim 16 6

To prove this result we need to prove that the Freidlin-Wentzell calculations are
justified, and we need to perform the calculations to obtain . We shall start from
Theorem 6.89, which we need to extend to sets that are not smooth bounded
and open, such as the sets 1 and 1 .
The heuristic reasoning behind the Freidlin-Wentzell approach is that steady

state probabilities may be approximated by considering upcrossings, as in the
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proof of Theorem 6.89. So consider the process and the way it goes from
its most probable location near 0 (under the stability condition; see §16.1) to the
region . Since is a constant coefficient process in the interior ( 0
and 0), and is also constant coefficient on each boundary, we expect that the
cheapest path—for the variational problem that results in an upcrossing —
consists of straight-line segments (Lemma 5.16). We prove in §16.3 that, in fact,
the cheapest path is a simple straight line, and that extra segments can only add to
the cost. This should not be surprising: the only reason we might have extra seg-
ments is that there might be a lower cost for traveling along a boundary in some
direction or other. But if a boundary path is cheaper than an interior path, there
will be no reason to switch to the interior, and if an interior path is cheaper than a
boundary path, then there is no reason to go along a boundary. Therefore we shall
simply calculate the “cost” of following straight-line paths from 0 to , and
see where is at the endpoint for the cheapest such line. Then Theorem 6.89
would indicate that (16.5) of Theorem 16.4 holds, and (16.6) follows with a few
additional calculations.
As usual, before we prove that the calculation is justified, we perform it. It fol-

lows by inspection that the standard scaling given by (5.1) is equivalent to
1

16 7

We start with an examination of the most likely behavior of the system,
then proceed to the large deviations calculations, and conclude this chapter with
the justifications.

It is easy to see what must be without any calculation at all. Simply note
that is an 1 process when viewed in isolation, 1 2 (it’s only when
they are taken together that their correlation makes the systemmore complicated).
But we know what the most likely path for an 1 queue is. We conclude
that the components of must be the corresponding most likely paths for the
processes and . The components of obviously determine the entire
process . We have found without calculation:

max 0 0
max 0 0

16 8

From this explicit form for we see that 0 as if and only if
the stability condition (16.4) holds. We see that the correlation between and

is indeed irrelevant as far as the stability of the system is concerned: themost
likely behavior depends only on the . Lemma 16.14 shows that

is positive recurrent if and only if (16.4) holds—we hope that our discussion
has made this result entirely believable.

Derive (16.8) directly from the definition (8.11) of .
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16.2. Formal Large Deviations Calculations
Section 16.2. FORMAL LARGE DEVIATIONS CALCULATIONS

( )

( )
( ) '( , )

'( , )
>

η
α

λ ν
ν β . ( . )

> >

'( , ) (µ , λ ), ( . )

( , ) ( . )

µ µ , µ . ( . )

'( , )

θ µ

µ λ . ( . )

We are interested in solving (16.2). The previous argument suggests that we con-
sider straight-line paths from 0 to the line 1 as depicted in Figure 16.6,
and look for the cheapest one. Properly we should also look at other straight-line
segments and piece together the cheapest path out of them; however, as proved
in §16.3, the minimal path is a simple straight line. Remark 15.10 is relevant
here; you might wish to review it now. So, let us try to solve the variational prob-
lem (16.1) using straight-line paths. When is a simple straight line and the
process is constant coefficient, is independent of : we only
need to distinguish between the case where the path moves along the boundary

0, and the case where is in the interior. Thus we need to minimize
over all and 0 so that 1. We start by considering paths that have
strictly positive slope, so that they travel in the interior. As we show in (16.19)
below, for such paths to be optimal it is necessary that

0 16 9

In fact, to have a strictly positive slope we must have a strict inequality in (16.9).
The intuitive interpretation of this condition is given below Lemma 16.7, and we
shall assume it holds until the final proof of Theorem 16.4.
We will find it convenient to do our calculations using an alternate form of the

local rate function. When 0 (or 0), Theorem 5.26 shows [with the
notation of (5.20)–(5.22)] that

inf 16 10

where

log 16 11

: 0 16 12

We will ease our calculations by using the following relationship between the
coefficients appearing in the various definitions of the rate function. If
is given by a particular in (16.2), and if it is also given by a particular
in (16.10), then Exercise 5.29 gives for interior paths

16 13

This enables us to do partial calculations with each form of the rate function, and
then to piece the calculations together.
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Figure 16.6. A test path .

Let us see how the cost varies for different straight-line paths. Such paths have
the form for 0 1 ; their velocity is , and 1 . In
Figure 16.6 the point 1 is at 1 . It is clear that there is no constraint
on other than it be positive; let us ignore even this restriction. As we shall see,
the resulting optimal straight-line path turns out to have a positive slope, so that
ignoring this condition at this stage would cause no harm. It does, however, sim-
plify the calculation considerably: for we can now minimize the cost freely over
for every . Equivalently, we can change the rates and arbitrarily in the

minimization in (16.10), and the value of is free to be any value. Since
0 if and only if , it is clear that the optimal twisted rates and

are equal to and respectively, and that these components contribute nothing
to the cost. Now using (16.13) we conclude that 0; that is, the twisted rates
have the form

16 14
for some . This means that we can replace in the definition (16.2), or in
the minimization of by

sup 1 1 1 16 15

But this is exactly the local rate function for the 1 process (in the interior),
with arrival rate , and service rate ! Thus we have reduced the problem of
calculating inf , restricted to interior paths, to a one-dimensional mini-
mization

inf inf 16 16

which, in fact, is a problem of the cost for an 1 process to go from zero
to one. But we have already treated this problem: this is exactly (11.8), which is
solved (in greater generality) in Theorem 11.15. Reading off the solution (11.22)
and the computation of we have

16 17

log 16 18
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θ

η ν β

η
α

ν λ
ν β,

( . )

( )
/

>

>

>

/ /

α λ ν

φ λ

λ θ , θ θ , λ
ν φλ φν α α/φ

φν
η φν β

(α λ ν) / /

(η φν β) η φν β >
( )

ν φν
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Under assumptions (16.4) and (16.9), the cheapest interior path for
the variational problem (16.1) is , with given in (16.17) and (16.19),
and with .

By (16.13) and the definition of this value of corresponds to

16 19

which by our assumption (16.9) is positive. We have proved the following.

If 0 then we have found a minimal cost path in the interior. Note that the
arguments remain valid if 0: in this case theminimal cost path is certainly on
the boundary. However, it is not clear that the cost we have calculated is correct,
since it corresponds to spending no time on the boundary—just skimming it. Even
if 0 we don’t necessarily know that the lowest cost path in the interior is
cheaper than the lowest cost path on the boundary. As we shall show, and not too
surprisingly, when 0 the interior path is indeed the minimal cost path.
Equation (16.18) has a simple interpretation based on our understanding of the

1 queue. When queue 1 fills, it does so by its arrival and service rates inter-
changing for a while (see Theorem 11.18). This means that during this interval,
the total arrival rate is while the service rate is . Now the only thing to
see is how this change of jump rates affects the second queue. Here is where the
change of measure interpretation makes things simple. The jump rates in the
directions are changed by a factor of , since the jump rates change
to exp , and 0 . That is, the arrival rates change from and
to and , and the service rate changes from to . This means that

the joint arrival rate for couples is now . So queue 2 sees a net arrival rate of
, and has a service rate during this interval. The length of the interval

is , since this is the amount of time it takes this 1
queue to fill [see the discussion near (11.23)]. Thus we expect queue 2 to be at
about level when 0; otherwise we expect it to be

.
There is another reason why the rate should change to . We can regard

the process of arrivals to queue 1 as being a single Poisson stream of intensity
, not the merge of two independent streams. We could then have a separate,

independent Bernoulli process that selects a fraction of this stream to cause
arrivals at queue 2. Hence when the original stream has its intensity changes from

to , queue 2 now sees a joint arrival rate of . That is, the property of
Poisson splitting and merging is encoded in our twisted measure.
We now sketch out the calculation of the minimal cost path on the boundary. In
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Chapter 8 we show that the local rate function takes the form

inf inf 1 1 0

16 20
where 0 are the twisted rates on the boundary and 1 are the twisted rates
in the interior . In our case,

0 : 1 1 0

In Chapter 8 [equation (8.21) and its discussion] we establish that (16.14) holds
as well when the process is on the boundary, that is when 0. Since
for our model all rates and jump directions in the interior are the same as on
the boundary—with the exception of , —we conclude from (16.14) that the
twisted rates agree as well: 0 1 for 1 2 3 and 4. The definition
of now shows that the only corresponding to a given when 0 must
satisfy

0 1

1

whenever . If the optimal twisted rates satisfy then
0 and 0, so that we are back to the previous case where the optimal

path is in the interior (and possibly “skims” the boundary). You should have the
following interpretation inmind for these quantities. is the fraction of time
spends on the boundary when following the path . The jump rates change to
in the interior and, by the previous argument, change in the same way on the

boundary. We show in Proposition 16.10 that, if (16.9) holds, then the fact that
the rates change in the same way implies that the interior path is optimal, even in
the case 0. Again, the “twisted process” behaves like an 1 queue so
that our previous reasoning applies. This is explored in Exercise 16.8 below.
The form of the rate function we have given ignores the boundary at 0 and

also the discontinuity at 0. We did this for simplification; we prove in §16.3 that
for the questions we ask, there is no need to calculate the rate for paths that travel
along the boundary at 0, and in any case the reader can easily determine
the rate function on that boundary since the system is perfectly symmetrical with
respect to a reordering of the indices.

Derive Equation (16.18) by solving the right-hand side of (16.16).
How does the calculation change when the path is along a boundary? That is,
show that the change of measure we have found holds then, too. You simply have
to check that (16.14) holds in this case, too.

In the notation of Theorem 8.19(ii), the rates were and was called . Sorry!
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Section 16.2. FORMAL LARGE DEVIATIONS CALCULATIONS

( )

α λ ν
. ( . )

( ) ( )

( , ) ( ) <
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Under the stability condition (16.4), for each and ,

Under Assumptions (16.4) and (16.9), the unique cheapest
path for the variational problem (16.1) is , with given in (16.17)
and (16.19).

Of course, we obtain more from our approach than estimates of the mean of
given ; we get the usual sample path properties as well. Define as the time
it takes to go from 0 to the line 1:

1
16 21

Using the conventions of Chapter 6 and shifting time, 0 and 0
1 . As in (6.7) we define 0 for . The same arguments we
use in the proof of Theorem 16.4 (based on the techniques of Chapter 6) would
yield

0 0

lim sup 0 1 1

This sample path property is, of course, nothing but Theorem 6.15 applied to
our process. Other theorems in Chapter 6 apply as well; the reader is invited to
prove Theorem 16.9 and to see which of the results there have interesting state-
ments to make about the process at hand.

As usual we begin our justification with a proof of correctness of our solution to
the variational problem. Afterwards we examine the relevance of the variational
problem to the probabilistic problem.

. First we use a “soft” argument to show that the optimal path must be a
single straight line. Let be an optimal path with 0 0 and 1. Con-
sider any piece 0 that lies in the interior. Since is a
constant coefficient process, its local rate function in the interior is strictly convex
and independent of . By Lemma 5.16 (see also Appendix C) all optimal paths
from to must be straight lines.
Now consider a piece of a minimal path lying entirely on one boundary. The

rate function along the boundary is convex by Corollary 8.18, but not necessar-
ily strictly convex (see Exercise 8.21). However, direct calculation (not included
here) shows that is indeed strictly convex, proving uniqueness of straight-line
paths as minimizers.
Consider now the case 0 and assume that consists of at least two

line segments—from to and from to . As we shall see below, the optimal
path is unique. But then the segment [ ] cannot be on the boundary 0:



1

1

S

S

S

468

(
∑ ∑

)

∑

∑

∞

∈ "∈ = =

"∈ =

=

i
i i

i
i i

i
i i

i
i i

π , µ , , , ,

µ , ,

, ,

" "
"

= "

= ≥
=

=

= =
"

= "
" ≤ ≤

"

=
=

=
=

" " ≥ − +

≥

〈" 〉 =

˜

˜

"

Chapter 16. THE FLATTO-HAHN-WRIGHT MODEL

2
1 1 2 2

1 2 2 1 2
1 2

2 2 1
2 1 1

2

1 1

1
1 2 1

1

2 2
2

2 2 1
1

1

2

1

[0 1] 1 3 4 1 3 4

1 3 4

1

1 3 4
1

1
1

r t r T
r t r t x

r t x x r t
t t

x r t t t
r t x

x

x x
x

x r t
r t t t T

z
r T x

x
x x x

x
x

x

b h a b

x y h h

h

e b

b
b

b

( ) ( )
( ) ( ( ), )

( ( ), ) ( )
,

( )
( , ( ))

( , )

( , ( ))
( ),

( ) ( , )
>

( , ) >
( , )

( , )

'( , ) ( π) (µ , λ ) π (µ , λ )

(µ , λ )

µ , ( , ) . ( . )

'

'

since the process is constant coefficient (in each region), if it is cheaper to follow
a positive slope from to , it would be cheaper to follow a positive slope
from to ! Since the process is constant coefficients, the cost from

to the line 1 is the same as from . Exactly the same rea-
soning shows that if the segment [ ] of the optimal path is on the boundary

0 then must be zero for all . Thus we conclude that any opti-
mal path either makes a straight line from a point 0 to the line 1,
or goes down to 0 and then proceeds in a straight line. But, as our calcula-
tion (16.19) shows, the optimal slope to move to the right must be positive. Thus
the last segment must be a straight line from 0 to 1.
The remaining question is, could it be optimal to go from 0 to a point 0

and the proceed to 1? Travel from 0 to a point 0 could be useful
only if it led to a path with lower cost than the path we already
found, since it costs a strictly positive amount to travel to any point which is not
on . But note that the path we computed in Lemma 16.7 was optimal among all
endpoints ! And moreover, the cost of a parallel path starting at any 0
with 0 is identical, since the process is constant coefficient. Therefore, the
cost of going from a point 0 with 0 to 1 cannot be lower then the
cost of going from 0 0 to the line 1, and hence the optimal path does not
travel to a point with 0.
It remains to compare the cost of going along the boundary 0 to that of

going through the interior in order to establish uniqueness. In fact, the argument
below establishes that the optimal path follows a fixed slope, and is thus a single
straight line.
Consider the rate function in the form (16.20) it takes on the boundary, and fix
. Since the function is positive,

inf inf 1

inf

where now places a restriction only on the first coordinate:

1 0 16 22

But this is exactly the form of , and the unique minimum for the level crossing is
that obtained for (16.16). If the minimum were obtained for a path on the bound-
ary via some other , our calculation shows we could decrease with the same
, a contradiction. We conclude that the unique optimal path is a straight line,

with speed .

Now that we know the correct solution to the variational problem, we can in-
voke the Freidlin-Wentzell theory as proved in Chapters 6 and 15. We use The-
orems 15.35 and 15.39, and the analogues of Lemmas 15.38 and 15.41 for our
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Section 16.3. JUSTIFICATION OF THE CALCULATION

ε >

( ) < ε . ( . )

(ε) > (ε) ε

( ) ε (ε). ( . )

( ) / /

/ /
λ ν α

α

λ ν
. ( . )

τ ( )
ε >

τ
( ε, ε) ( . )

(τ ( )) . ( . )

Let denote the first time that the FHW process reaches
one. Uniformly for in any compact set , for any
we have

and furthermore

process. We need to check that the conditions of these theorems are satisfied, of
course; we do this in a series of lemmas.

Assume (16.4), show that for any and 0,

lim sup 1 16 23

Also show that there is a function 0 with 0 as 0 such that

lim inf
1
log 16 24

(This latter equation is a statement that Lemma 15.41 holds for the FHWmodel.)
Hint: Each component of is an 1 queue.

The large deviations principle holds for the FHWmodel because the hypotheses
of Theorem 15.35 are satisfied (see Exercise 16.11, which shows that 0). It
is also easy to see that Kurtz’s Theorem holds for the FHW model.
The FHW process is now even easier to analyze than the processes of Chapter

15, since the positive cone spanned by the is . Therefore Theorem 6.77 holds
for the FHW process.
Furthermore, Theorem 6.92 holds since the FHW process satisfies all its hy-

potheses, too. With just a bit more arguing we can establish Theorem 6.92 for the
FHW model and the set 1 . This is done as in the proof of Theo-
rem 15.39, where again the arguments are even simpler for the FHWmodel since
the span . The justifications follow. Therefore we claim that Theorem 16.4
is proved, and even more that Theorem 16.9 holds. We also obtain the following.
Let denote the cost for the FHW process to reach the line 1; by the cal-
culations of §16.2, this is the same as the cost for an 1 queue with arrival
rate and service rate to reach the level. Therefore

log 16 25

: 1 0

lim
log

1 16 26

lim
1
log 16 27

This is just a restatement of Theorem 6.77.
We can establish that the FHWmodel satisfies the hypotheses of Theorem15.39

using a general argument that holds for any process whose positive cone is all of
. The idea is that any two nearby points must have nearly the same steady-

state probability, since a sample path that visits one point is fairly likely to visit
the other.
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Under assumption (16.4), there exists a so that for every
there is an such that the following holds. For every and in with

and in such that and for every ,

Under Assumption (16.4), the process is positive recurrent.

0
0

16 28

. This is obvious from representation (6.34) of the steady state and the fol-
lowing observations. For any ,

16 29

by the Markov property. But for this conditional probability we can easily derive
a lower bound (as in the proof of Theorem 11.4 or Exercise 11.20), by considering
the probability that the process makes exactly the necessary series of jumps to go
from to in the prescribed time, and makes no other jumps. With the proper
choice of the lower bound follows. Note that we can derive a “universal” bound
that depends only on . A symmetric argument interchanging the role of and
establishes the upper bound.

. The recurrence follows from more general results for two-dimensional
systems; see e.g., [C2] or the original work of Malyshev [Mal]. A modern, in-
tuitive approach is given in [Cn] and in [Da].

Wright analyzed the FHW model extensively in [Wr], extending the pioneering
work of Flatto and Hahn [FH], [Fl]. He obtained an explicit expression for the
entire steady-state distribution of , as well as the asymptotic formulas we de-
rived here, and even had more accurate expressions in case 0. His results
were based on the complex variables methods of Malyshev, and do not seem to
extend to more than two queues, though J. W. Cohen has recently reported some
progress in this area. We have also obtained some more detailed asymptotics us-
ing time reversal and large deviations in [SW]. That paper also gave some other
connections between time reversal and large deviations. Our early work on this
problem benefitted from discussions with Richard Ellis and Paul Dupuis.
The techniques we developed here should be applicable to more general queu-

ing systems. For example, it is not hard to find the asymptotics for systems of three
or more coupled queues, assuming that the large deviations principle holds (see
[SW]). This assumption was our main difficulty in carrying the method forward.
However, the new technique in [DE2] seems to provide the requisite theory.
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Appendix A

Analysis and Probability

Definition A.1.

Lemma A.2.

Definition A.3.

A.1. Topology, Metric Spaces, and Functions

D T

A B
A B
A B

A A
A A B x x A x B
A B

x x

A
x A x A

A A A
A A A

A A A
A A A A

complement

A collection of subsets of is called a topology if
(i) and ,
(ii) Any finite intersection of members of belongs to ,
(iii) Any union of members of belongs to .
The pair is called a .

open
closed neighborhood

A set in a topological space is open if and only if for every
point in there is a neighborhood containing that is contained in .

Let be a set in a topological space . The interior of
is the union of all open sets contained in . The closure of is the intersection
of all closed sets containing . The boundary of consists of the points in its
closure that are not in the interior: . An of a set is a

This appendix collects the background information needed to read this book. It is
mostly telegraphic, although some intuition is given where, in our judgment, it is
called for.

Thematerial in this section is covered is most books on analysis or functional anal-
ysis, with the exception of the space [0 ]. Dunford and Schwartz [DuS] and
Royden [Roy] are the main references; Rockafellar [Roc] is our source for con-
vex analysis, and Billingsley, Kurtz, and Ethier and Kurtz [Bil, Ku1, EK] cover
the function spaces of interest.
Let be a space, that is, a collection of “points.” If and are subsets of ,

we denote by their intersection, that is, the collection of points that belong
to both, and by their union, that is the collection of points that belong to at
least one of these sets. The of is the collection of points in
that are not in . The set difference : is sometimes
denoted also as , and is the empty set.

topological space

We sometimes refer to as a topological space, if is clear from the context. A
set is called if and only if it belongs to . The complement of an open set is
called . A of a point is any open set containing .

open cover
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The requirement (iv) above is the (in)famous .

:

In this setting the set : is called an open ball with radius and
center . A set is called if for some we have sup
(by the triangle inequality, any will do). Note that it is possible that there are
different topologies that make also into a topological space. The topol-
ogy induced by is termed the Borel topology.

The space of real numbers, where is the usual (Euclidean)
distance, is a metric space. Open balls are just open intervals. In the Euclidean
space (the dimension is not related to the metric , sorry),

and

are both metrics, and both induce the same topology (although open balls are dif-
ferent!). We use the standard distance , and denote the scalar
product by . A set in is compact if and only if it is closed
and bounded (the Heine-Borel theorem).

collection of open sets whose union contains , that is, every point in belongs
to at least one of the open sets.

A set in a topological space is compact if every open
cover of contains a finite subcollection that is also a cover. It is precompact if
its closure is compact.

Let and be topological spaces. The product
space is the collection of all pairs . The product
topology is the smallest topology that includes all sets of the form

for all and .

A metric on is a real-valued function
with
(i) for all in ,
(ii) if and only if ,
(iii) , and
(iv) for all and in .

triangle inequality

Let be a metric on . A metric space is a topological
space where the topology is the smallest one that contains all sets of the form

, for all and . These sets are called open balls, with center
and radius . Equivalently, every set in is the union of finite intersections of

open balls. In this case we say is induced by .

bounded
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TheoremA.9.

Definition A.10.

Definition A.11.

DefinitionA.12.

Lemma A.13.

Definition A.14.

( , τ )
( , τ ) τ

τ τ.

( , ) τ ( , )
τ

( , τ )
( , τ )

( , ) < ε

, , . . . ( , )

( , ) .

( , ) ,

,

α (α) (α) α

( (α), (α)) .

τ τ
τ τ

( , τ )
( , τ ) τ

, , . . . ( , )
, , . . . ( , )

(ε) ( (ε)) (ε) / (ε) ε

Let be a topological space and a set contained in . Then
is a topological space, where the induced topology is defined by

if and only if for some

A sequence in a metric space is Cauchy if

The sequence “converges to a limit” (written or )
means

or, equivalently, means that any neighborhood of contains all points
(where depends on the neighborhood). If and possibly depend on a

parameter , then uniformly in means

A topology is called stronger (or finer) than a topology if
every set in is also a member of .

Twometrics an on are equivalent if they induce the same
topology.

If converge to a limit in and is a weaker
metric, then converge to in . Conversely, if every sequence
that converges under also converges under , then is a weaker metric.

Let and be real functions.
Say if is bounded for small.

If is metric with induced (also called—relative) topology , then
is metric with induced topology . A set is compact in the relative
topology if and only if it is compact in . However, a closed set in may
not be closed in ! In a metric space, open balls in the relative topology take
the form : .

lim 0

lim

lim 0

lim sup 0

The index need not be an integer.

In this case the topological space has more open (or closed) sets than
. The topology is called weaker, or coarser. Stronger (or weaker) met-

rics are defined through the induced topology.

Thus and are equivalent if and only if they have the same converging
sequences. Note that equivalent metrics may have different Cauchy sequences!
The metrics in Example A.8 are equivalent. The speed of convergence can be de-
scribed through the following notation.
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Definition A.15.

Definition A.16.

Theorem A.17.

Definition A.18.

Theorem A.19.

Definition A.20.

Definition A.21.

Definition A.22.

Example A.23.

Functions.

0 0

0

In , there are special types of limits that we need.

lim inf lim inf lim sup lim sup

lim inf

0

0

1 [0 1]

The spaces 1 2 of Example A.8 are Polish spaces,
and also topological vector spaces.

Let and be two metric spaces and a function : .

Say if as .
The most common usage is when . With some abuse of notation, we

Say if is bounded for large, and
Say if as .

For a real sequence define

and

For a real sequence we write if .

A set in ametric space is sequentially compact if every
sequence of points from contains a converging subsequence.

A set in a metric space is compact if and only if it is
closed and sequentially compact. The set is open if and only if it contains an open
ball around each point. The set is closed if and only if whenever a sequence of
points in converges, the limit is also in .

A set is dense in a set if, for every and every ,
there is a with . A topological space is separable if it contains
a countable dense subset. A metric space is complete if every Cauchy se-
quence converges. A complete, separable metric space (sometimes abbreviated as
CSMS) is also called a Polish space.

Let be closed and be compact in a complete metric space
. If then there exists some so that for all
and all .

is a vector space if
(i) For all in and real, is defined and belongs to .
(ii) For all and in , is defined and belongs to .

A set in a vector space is convex if whenever the points and
are in , then is in for any in .

is a topological vector space if it is both a topological
space, a vector space, and in addition the functions and

are continuous (as functions of two arguments—Definition A.25).
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Definition A.24.

Definition A.25.

Definition A.26.

Theorem A.27.

Definition A.28.

Exercise A.29.

( ) ( ), .

( ) ( ) .

( , ) ( ) .

( )

,
( ( ), ( )) ( , )

δ

( , δ) ( ) ( ) , , ( , ) δ .

ρ (δ) ( , δ).

( β), β β

( , δ) δ .

( ) ( ) .

( , δ) δ
( , δ)

(( , )
( , ))

( )

( ) ( ).

A f

f A y y f x x A

A f

f A x f x A

f

f x x x f x

f f A
A f

x y
d f x f y L d x y

L

f
x

C x f x f y x y d x y

C x

f x B x
B

C x

f

x x f x f x

f x
C x K

K C x x K

f
f a a
f a

f f A
A f

x x f x f x

:

:

graph :

:

sup :

sup

sup 0 0

:

lim lim

:
0 0

0

:
]

[

Show that is continuous if and only if is closed when-
ever is closed, and that is lower semicontinuous if and only if

lim implies lim inf

The image of a set under is

for some

Similarly, the inverse image of a set under is

The graph of is the set in

The function is called continuous if is open
whenever the set is open in . The function is Lipschitz continuous if for
all ,

for some positive , called the Lipschitz constant.

The local modulus of continuity of a function at
a point is the function of

The modulus of continuity is the function

A family of functions is called continuous in uniformly in
(over ) if

as

A function is continuous if and only if

in implies in

The image of a compact set under a continuous function is compact. A function
is continuous at if and only if its local modulus of continuity
as , and if it is continuous on a compact set then it is

uniformly continuous on , that is uniformly in .

A function is lower semicontinuous if the set
is closed, for every real . It is upper semicontinuous if the set

is closed.
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Exercise A.30.

Theorem A.31.

Definition A.32.

Definition A.33.

Lemma A.34.

Proof

x y

d
d
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n x A
n
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n
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x A y B y B x A n x A
n

n x A
n

x A n n
x A n

n

i x A i

n i n n

n i n
x A n

n x A
n

x A n n
x A y B

( )

( ( ))

( ) ( ),

( ) ( )

( )
( )

∂ ( ) .

, , . . .

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ),

( , ) ( , ) ( , )

( ) ( , ). ( ) ( , )

( ) ( , )

( ) ( , ),

( , ) ( , ) ( , )

f f

f g x

f x f y

f x f y x y

G f
f x

f x

x G f x

f x A y B
y y B

f x y f x y
f x y f x y

f x y f x y

f x y f x y f x y

f x y f x y f x y

f y f x y f y f x y x

f y f x y

x

f y f x y

f x y f x y f x y

A lower semicontinuous function attains its minimum on every
compact set.

A function of a real variable is right continuous if

that is, converges to as decreases to . The definition of left contin-
uous is analogous. (This is generalized in Definition A.52.)

A set in has smooth boundary if there is a function
from to that is twice continuously differentiable, so that implies

, and
if and only if

Let be a real-valued function of the variables and ,
and an arbitrary sequence in . Then

(i)

.

(ii) If, in addition, the following two equalities hold:

then .

Establish the following. If is lower semicontinuous than
is upper semicontinuous. A function that is both lower semicontinuous and upper
semicontinuous is continuous. The supremum of a family of lower semicontinu-
ous functions is lower semicontinuous. The composition of continuous
functions is continuous. Hint: use the definitions, not the theorems.

lim

0
0

0

lim inf inf inf lim inf
lim sup inf inf lim sup

sup inf inf sup

inf sup sup inf lim inf

lim inf inf lim inf inf lim sup

. Denote inf Then for all , and so

lim inf lim inf

for all , and hence

lim inf inf lim inf

which is exactly (i). The proof with lim sup or sup is identical.
From (i) we obtain

lim inf inf inf lim inf inf sup
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Definition A.35.

TheoremA.36 .

Convexity.

Definition A.37 .

( , ) ( , )

.

π ( ) ( ( / )). ( . )

( ) ( ) ( )( )

( )( ) . . . ( )( ) ,

( )
( ) ( ) ( ) .

/( )

λ ( λ) λ ,
λ

( , α) , α , α ( )

( ,

(( λ) λ ) ( λ) ( ) λ ( ), < λ < .

f x y f x y x

x e e x e e

n n n e O n A

f
x n

f x f x f x x x

f x x x
n
f x x x R

f k f

R
n

x t f t f x dt

d f
R x x x x

C f
C

C x y C x y
C

C C
C C C

C C C
C C C C

f x x C f x
f f

C

f x y f x f y

since lim inf sup for all . Due to our assumption there
is equality throughout, and (ii) is established.

Here are some miscellaneous formulas we need.

sinh
1
2

cosh
1
2

! 2 1 1 1

(Taylor’s Theorem) :

1
2!

1
!

1
1 !

:
0

The standard reference on convexity in is Rockafellar [Roc].

[Roc]

1
0 1

Aff
ri

Aff ri

epi :
epi

]

1 1 0 1

Hyperbolic sine and cosine are defined by

and

Stirling’s formula approximating the factorial function is

Let have continuous derivatives
in a neighborhood of up to order . Then in that neighborhood,

where is the order derivative of and

A similar expansion is valid for a function of variables , in which
case as .

Let be a subset of and a real-valued function on
.
(i) is called affine if is in for all real whenever are

in (p. 3). It is called convex if the same holds but for (p. 10).
(ii) The convex hull of is the smallest convex set containing . The affine

hull of is the smallest affine set containing (p. 6).
(iii) The relative interior of is the interior of in the relative topology of

, and the relative boundary of is the set .

(iv) The epigraph (p. 23).
(v) is called convex if is a convex set in (p. 23). A function from

a convex set to is convex if and only if (Thm. 4.1 p. 25)
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Theorem A.38 .

Definition A.39 .

Theorem A.40 .

Definition A.41 .

Definition A.42 .

Theorem A.43 .

( ) <

( ) > ( ) <

( )

( ) ( )

( ) ( , ( ))

( )

( )

( ) ( ) , .
( , ( )) ∂ ( )

∂ ∂ ( )

∂ ( )
( ) ∂ ( )

( )

( )

, , . . . ∂ ( )

(λ ( λ) ) < λ ( ) ( λ) ( ) < λ <

∂

f f
x f x

f f x x f x
x

f f
f f x x

f
f f f

f x

f f x x x f x
f f

f
f f f f

f f f f f f

f x
x f z f x x z x z

f x f x f x
f x f x f x

f f x
x f x f f x

x f

C f
f C
x x x C f x

C

f C
f x y f x f y x y

f

f
f

dom
:

cl

cl
cl

sup
concave

Most of the results on convex functions can be translated to statements about
concave functions.

[Roc, p. 104 and Thm. 12.2]
cl

cl

[Roc p. 215]

epi
dom :

[Roc Thm. 23.4 p. 217]
dom ri dom

int dom

[Roc p. 251]
int dom

lim

[Roc p. 253]
1 1 0 1

dom

We shall call strictly convex, without mentioning a convex set, if it is strictly
convex on dom .

[Roc Thm. 26.3 p. 253]

(vi) The effective domain of a convex function , denoted , is the convex
set (p. 23).

(vii) A convex function is proper if for all , and for
some (p. 24).

(viii) The closure of a convex function is the function whose epigraph is
the closure in of the epigraph of , unless for some .
In the latter case set . (p. 52).

(ix) is closed if . A proper convex function is closed if and only if
it is lower semicontinuous. The only improper closed convex functions are

or (p. 52).

(x) The conjugate of is (p. 104).
(xi) A function is if the function is convex.

The function is convex and
closed. If is convex then is proper if and only if is andmoreover,
and , so that for closed convex we have .

For a convex function , say is a subgradient at
if for all That is, the affine function on the right

is a supporting hyperplane of at . The subdifferential is the
set of all subgradients of at . The domain is the set .

If is convex and proper then is
empty for , and is non-empty for . Finally, is a
non-empty bounded set if and only if .

A proper convex function is essentially smooth if
(i) is non-empty,
(ii) is differentiable on ,
(iii) If converges to then .
In particular if then essentially smooth means differentiable.

A function is strictly convex on a convex set
if for all and all .
It is essentially strictly convex if it is strictly convex on every convex subset of

.

A closed proper convex function is es-
sentially strictly convex if and only if its conjugate is essentially smooth.
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C T
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t T AC T

Theorem A.44 .

Theorem A.45 .

Definition A.46.

Theorem A.47.

Theorem A.48.

Spaces of functions: .

(Min—Max Principle) [Roc, Cor. 37.3.2 p. 393]

inf sup sup inf

[Roc Thm. 10.2 p. 84]

The definitions extend to sets and functions on more general spaces.

0 1

1 1

In our applications convex functions might take the value , but not !
The results of Theorems A.47 and A.48 are immediate from the definitions.

sup

0

ri 1

only on
the relative boundary

[0 ]
Let [0 ] denote the collection of all continuous functions of a parameter

[0 ], with values in . We denote by [0 ] the subset of absolutely
continuous functions (Definition A.83).

Let be
a real-valued function, continuous in , convex in for each ,
and concave in for each . Let two closed convex sets and be
given, at least one of which is bounded. Then

Let be a polyhedron (intersection of
finitely many closed half-spaces) or a polytope (the convex hull of a finite number
of points). Let be a proper convex, lower semicontinuous function that is finite
at every point of . Then is continuous as a function from to .

A real-valued function on a vector space is convex if for any
two points and and any real ,

It is called strictly convex near if (it is defined on a topological vector space and)
in some neighborhood of the inequality is strict ( ) for all .

Let be a collection of convex functions on a metric vector
space. Then

(i) The function defined by is convex.
(ii) If for some function the convergence holds at each point

as, say, then is convex.

Let be a convex set in, and a convex function on a metric
vector space. Then
(i) Any point in is a convex combination of points in
the relative boundary of .

(ii) If is strictly convex in , then has at most one minimum in .
(iii) If is a closed and bounded set, then achieves its maximum on the relative

boundary of . If is strictly convex then it achieves its maximum
of , that is cannot have a maximum in the relative

interior.
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Theorem A.49.

Exercise A.50.

Theorem A.51 .

The space .

Definition A.52.

Theorem A.53.

The space is a Polish vector space, where

The set has compact closure in
if and only if
(i) The initial points are bounded: , and
(ii) The functions in are equicontinuous, that is, for every and there exists

a so that, whenever we have , for all in .

time of a jump

A function of a parameter with values in a metric
space is right continuous at if . The function is said
to have left limits at if exists (although it may not equal ). It is
called right continuous (with left limits) if it has this property at every .

Every function in has at most a countable number of
points where it is not continuous.

[0 ]

sup

[0 ] is a separable metric vector space, but is not
complete. Hint: take a continuous function that is not absolutely continuous and
make a sequence of approximations.

We shall suppress the subscript or, altogether the notation of the metric when-
ever this “sup norm” is used and no ambiguity arises. This space is standard and
is discussed in any text on functional analysis, and many texts on “real analysis,”
e.g. Royden [Roy].

Arzelà-Ascoli [0 ]

sup 0 :

[0 ]
The functions that arise in our applications are either piecewise constant, or are
continuous. The sup-norm distance of Theorem A.49 is not appropriate for these
applications: a small change in the means that the new process is far
from the original in the sup norm. To allow small fluctuations in the time of jumps,
we need the Skorohod topology. The idea is simple: the functions and are
close if we can make them close in the sup norm, by making small perturbations
to the time-parameter of, say . For details and proofs concerning this space, see
e.g., [Bil, EK].

[0 ]
lim

lim
[0 ]

The space [0 ] contains all functions of a parameter [0 ] with values
in , which are right continuous with left limits. Functions in this space have the
following simple property.

[0 ]

Let be a collection of strictly increasing (real) functions on [0 ], such that
0 0 and , and such that

sup log 2
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Definition A.54.

Theorem A.55.

Definition A.56.

Theorem A.57.

Theorem A.58.

Corollary A.59.

Corollary A.60.

Proof
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( , ) γ (λ), ( ) (λ( )) . ( . )

,

, ,

ρ ,

w , ) ( ) ( ) < < .

δ , , . . . , ,

< < . . . < > δ.

ρ (δ)

ρ (δ) w , ).

, ,

( ) , <

ρ (δ)

, , . . . , ,
λ , λ , . . . *

γ (λ ) ( ) (λ ( )) ( . )

λ ( ) ( ) (λ ( )) . ( . )

, ,

( , , )
( , , )

, ,

, , , ,

( ) , , , ,

The standard metric on [0 ] is

inf max sup 3

Below we suppress the subscript whenever no ambiguity arises.

[0 ]

[0 ]

[0 ]

[ sup :

1 [0 ]
0

inf max [

[0 ]
sup : 0

lim sup 0

The second assumption means that the functions in are equicontinuous at
points of continuity, and all have a finite number of large jumps.

[0 ]

0 sup 0 4

sup 0 sup 0 4

[0 ]
[0 ]

[0 ]

[0 ]
[0 ] [0 ]

. The identity maps from [0 ] to [0 ] (or
) is continuous, so it maps compact sets into a compact sets (Theorem A.27).

The Skorohod topology is the topology induced on by
.

is a complete, separable metric space.

The modulus of a function in . Let

Given consider all finite partitions of so that
and

Then is the infimum over all such partitions:

A set has compact closure in if and only if
(i) The values are bounded: , and
(ii) .

A sequence converges to in if and
only if there is a sequence in so that one of the following equiva-
lent conditions holds:

and

and

is a metric space, and its topology is stronger
than that of . Consequently, every open (closed) set in is also
open (respectively closed) in (the converse is of course false).

If is compact in , then it is compact in
and in .
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A.2. Ordinary Differential Equations
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Exercise A.61.
1

Lemma A.62.

Exercise A.63.

Extension to .

Theorem A.64.

Definition A.65.

Theorem A.66 .

D T d
f t t T

C T d d

r D T d

x D T x t r t

x D T x t r t

d C T D T T n

C

d x y
d x y
d x y

A

x n x t x t t n
D

d d d

D x t x t x t

f x t I t I x t
t x t D

dx t
dt

f t x t t I

f D
t x D

[0 ] is complete, but not separable. Hint: consider the
collection [ ] with 0 .

[0 ]

Let be a continuous function. Show that in [0 ] ;

[0 ] : sup is an open set, and

[0 ] : sup is a closed set.

Hint: use Theorem A.17 and (A.4b).

[0

Let be a metric on the function space [0 ] or [0 ], with .

[0 [0

1
2 1

5

[0 ] 0
[0

either or

The topology induced by this metric is called the product topology.

The results of this section are quoted from Hale [Hal].

Existence (Peano) [Hal, Thm. 1.1, 2.1]

On , the metrics and are equivalent.

The space of continuous functions on is a Pol-
ish space under the metric

where is the function on defined by for .
Similarly, is a complete metric space under the metric defined through
(A.5), with . It is separable (thus Polish) only if is used.

Let be an open set in . A function
is called a solution of the ordinary differential equation (ODE) with vector field
and initial condition at on an interval if for , is continuously

differentiable, and

for all

If is continuous in
then for each there is at least one solution of the ODE with initial



483

( )

( )

F
F

F
F

F

−

−

! −

−

n

n

n

n

n

n

0 0

0 0

0
0 0 0 0

0 0

1

1

1

1

-

- - -

= - -
- -

- - -
-

- = - - -

- = -

- = - - -

A.3. Probability and Integration

Section A.2. ORDINARY DIFFERENTIAL EQUATIONS

x t
D

f D
x x t x t
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f t
d x t
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dx t
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x t

n g

d y t
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g t y t

y t
d x t
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dx t
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x t
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( , , λ) ( , , λ)

λ ( , , λ)
( , , λ, ) ( , )

λ ( , , λ)

( )
,

( )
, . . . ,

( )
, ( )

( )
( , ( ))

( )
( )

, . . . ,
( )

, ( ) .

, ,
σ σ

(,, )

µ

Theorem A.67 .

Theorem A.68 .

Remark.

Measure, probability, and integration.

Definition A.69.

DefinitionA.70.

Uniqueness [Hal, Thm. 3.1]

Continuous dependence [Hal, Thm. 3.2]

The theorems above apply to higher order equations through the fol-
lowing standard construction. The ODE

of order can be represented, with an appropriate definition of , as

In this section we review the main results (and notation) of the modern theory of
probability. The foundations for the modern approach are the theories of measure
and integration, which we also need. For more information consult any modern
book on probability theory, e.g. [Br, Chu]. Books on real analysis and integration,
e.g. [Roy], will also be helpful. Formore advanced subjects see Billingsley, Kurtz,
Ethier and Kurtz, and Stroock and Varadhan [Bil, Ku1, EK, SV].

To read this section you need to know the basics of set theory, metric spaces, and
functions. The relevant material is reviewed in §A.1.

condition at . There is a maximal interval of existence, and near the endpoints
of the interval the solution approaches the boundary of .

If is continuous in and locally
Lipschitz in then for each initial condition there is a unique solution .

Let belong to some
closed set, and suppose is continuous in and Lipschitz
in , where the Lipschitz constant does not depend on . Then for each
there exists a unique solution with initial conditions of the
ODE with parameter . Moreover, the solution is continuous in .

Let be a set, and let be a collection of subsets of . The
collection is called a -algebra or a -field if it contains the empty set, and is
closed under set complements, countable unions and countable intersections. Sets
in are then called measurable sets. In a probabilistic context they are called
events. The pair is called a measurable space.

A real-valued function whose arguments are sets in is called
ameasure if it is non-negative and countably additive. The last requirement means
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Exercise A.71.

Definition A.72.

Definition A.73.

Example A.74.

Definition A.75.

, , . . .

µ µ ( ) .

(2, , µ) µ σ
, , . . .

2 µ( ) < .

µ(2) µ (2, , µ)
µ

µ( ) µ

σ

(2, , )

, ε

( ) ε.

(2 , , µ ) (2 , , µ )
2 2 ω , ω ω 2 , ω

2 σ σ

ω , ω ω , ω
µ µ( )

µ ( ) µ ( )

( , ) σ
σ ( )

( )

( , ( ))
( , ) >

ε >
ε

( )

(2, , )

µ(2)

1

0

Throughout the book we consider only -finite measures.
Let be events on a probability space . Show that for

all and , lim log max , and for all positive and ,

lim sup
1

log implies lim inf
1

log

:

:

There exists a unique measure on with the property
that [ ] for all . It is called Lebesgue measure. A set
has a Lebesgue measure zero if and only if for any 0 it can be covered by a
countable number of intervals, the sum of whose lengths is less than .

In fact, the Lebesgue measure is defined on a collection of Lebesgue mea-
surable sets that (strictly) contains . We shall not discuss the resulting fine
points: see any book on real analysis or modern integration theory.

:

Throughout the book we hold a probability space fixed, where is
a probability measure. But note that the measures we consider below are not nec-
essarily probability measures, and in particular we might have .

that if are disjoint sets in then

The triple is then called a measure space. A measure is -finite if
there are sets in so that

and

If in addition then is called a probability measure, and
is called a probability space. For a set in , we say holds -a.s. (“almost
surely”) if . If is a probability measure then the equivalent term
“w.p. 1” (with probability one) is used.

Let and be measure spaces. The
product space is the collection of all pairs

. The product -field is the smallest -field that includes all sets of the
form for all sets . The product mea-
sure is the (unique) measure on the product space for which

for all sets .

Let be a Polish space. The smallest -field of subsets of
that contains all open balls is called the Borel -field and is denoted . Sets

in are called Borel sets.

We say a property holds almost everywhere (abbreviated as a.e.)
if it holds outside a set of Lebesgue measure zero. A function is
called essentially bounded if there exists a bound so that a.e.
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Definition A.76.

Definition A.77.

Definition A.78.

Theorem A.79.

x
x B B

x d
x x B B x
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i
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i
k

x
i

k
x

x d
i
k

i
k

x
i

k

x

x d x d x d

x
x

x
x

x y
a b

a x b y d a x d b y d

x x x d

,
( )

, ( , )
( )

(,, , µ)

µ ω , (ω) < < .

(ω) µ(ω) µ ω , (ω) < .

(ω) µ(ω) (ω), µ(ω) (ω), µ(ω).

µ

(ω) (ω) µ(ω) (ω) µ(ω) (ω) µ(ω).

(ω) µ (ω) µ(ω)

A random variable is a real-valued function on which is
Borel measurable, that is for any Borel set .

If is a function on with values in a Polish space and
is measurable, that is, for every Borel set in , then we call

an abstract valued random variable.

A real function on is called Lebesgue integrable if
it is measurable and

If is integrable and non-negative, its Lebesgue integral can be defined by

If is integrable its integral is defined by

If is a probability measure then this integral is called the expectation of and
is denoted as .

Let and be real, integrable functions.
(i) For any scalars and ,

(ii) If is nonnegative then -a.s. if and only if .

Note that no probability is required in order to define random variables.
Expectations of random variables are special cases of integrals. For details on

integration see, e.g., [Roy].

lim sup :
1

lim :
1

max 0 max 0

This definition of an integral is more explicit than the standard one, but the idea
is the same. We approximate by a function taking a finite number of values.
Since is not necessarily bounded, the number of mesh points has to grow faster
than the inverse of the mesh size. Here are some properties of this integral (which
of course carry over to expectations).

Linearity.

0 0

For real-valued functions of a real variable, this integral with respect to the
Lebesgue measure is called Lebesgue integral. For “nice enough” functions (in
particular, piecewise continuous functions that vanish outside bounded sets) it
agrees with the Reimann integral.
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Definition A.80.

Definition A.81.

1

Definition A.82.

1

1

Definition A.83.

L L p

x

x x d

d x y x y

x
F F t x t

F B x B
B x F

f y B

x B B y f y dy

x d

x x

F y
n

x y A

x x
A

A
n

x A A

f
s t i

I

t s f t f s

1

[ ]

:
1

[ ] 6

:
1

[ ] 7

:

We need some special properties for real-valued functions.

0 0 [ ]
1

(,, , µ) , <
(,, , µ)

<

(ω) µ(ω) .

( , )

(,, , µ)

( ) ( )

( , ( )) ( ) ( )

( )

( ) ( ) ( ) .

( , )
( , ( ))

, , . . .

( ) . ( . )

, , . . .
µ

µ ( ) . ( . )

µ δ

δ > ε > , ,

. . .

( ) < ε ( ) ( ) < δ.

The space (abbreviated ), with
is the collection of real-valued functions on the measure space sat-

isfying where

If addition of functions and multiplication are defined in the obvious way (point-
wise) then this space is a Polish vector space, with .

Let be a random variable on a probability space .
Its distribution function is defined by . Its distribution is
a probability measure on defined through for
all Borel sets . We say has a density (or has a density) if there exists a
(measurable) function so that for all Borel sets ,

If is an abstract random variable with values in then its distribution is a
probability measure on , defined in the same way.

The empirical distribution of the sample mean of a sequence of
random variables is

Let be sequence of random variables with values in some metric space
. The corresponding empirical measure of a measurable set is then

In terms of the Dirac delta function: .

A real-valued function on is called absolutely continuous
if for any there exists an so that the following holds. If

is a finite collection of nonoverlapping intervals, then

implies
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Definition A.84.

TheoremA.85.

Definition A.86.

Definition A.87.

Theorem A.88.

Definition A.89.

Theorem A.90.

α

( ε) ( )

ε
α,

α ( ) ( )/

>

( )
( )

( ).

, , . . .
(,, , µ) ( , )

µ ω (ω) (ω)

, , . . .
( , ) ω (ω) (ω)

ω ( (ω), (ω)) > ε
ε > ( ) ( )

( ) ( )

, , . . .

( , )
ε >

( ) > ε α.

( , )
( , ) ( ( ), )

A function on with values in is called absolutely continuous if each of its
components is absolutely continuous.

A function on with values in has a derivative at a point
if

and in this case we denote the value by or by . If the derivative
exists at each , we call the function differentiable. It is differentiable a.e. if the
set of points where it is not differentiable has (Lebesgue) measure zero. In this
case its derivative is only defined Lebesgue-a.e.

A function is absolutely continuous if and only if for all ,

In particular, an absolutely continuous function is differentiable Lebesgue-a.e.

Let be a sequence of measurable functions on the
space with values in . We say a.s. (almost surely) if

.

Let be a sequence of random variables with values
in . We say w.p. 1 if .
We say in probability if for every

.When are real-valued, we say in distribution if
at every point that is continuous. In general, we say in distribution
and denote this as if, for any real-valued, bounded continuous function ,
we have . Since this convergence depends only on the distribu-
tions, we can say that the distributions converge weakly and, with a slight abuse
of notation, that converges weakly.

Under the conditions of Definition A.87, the following implica-
tions hold. Convergence w.p. 1 implies convergence in probability which, in turn,
implies weak convergence. If the limit is not random then convergence in prob-
ability is equivalent to weak convergence. For real valued random variables, con-
vergence in the space implies convergence in probability.

Let be a collection of random variables with values in a
Polish space and corresponding distributions . The set of distribu-
tions is called tight if, for each , there is a compact set so that

for all

With a slight abuse of notation, we say in this case that is tight.

Let be a Polish space. The collection of probability mea-
sures on can be made into a Polish space , so that a set is com-
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Theorem A.91.

Exercise A.92.

Theorem A.93 .
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µ(,) < ,
θ θ >
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θ < θ

θ
µ (ω) µ.
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(ω) µ(ω) (ω) µ(ω).

The following convergence theorems are used heavily in the text. They can all
be found in [Roy].

Lebesgue dominated convergence

lim 0

lim

Monotone convergence theorem

lim 8

Bounded convergence theorem

Suppose that , and that is a positive function on .
Assume that for some 0,

Then for all 0 , the integral is finite and

Hint: use dominated convergence and the definition of derivative.

(Fatou)

lim inf lim inf

pact if and only if it is tight and closed, and convergence in agrees with weak
convergence.

Let and be real-valued measurable functions and
assume -a.s.
(i) . If there exists an integrable function so
that -a.s. for each , then

that is, in the space . In particular, .

(ii) . If the functions are non-negative and
increasing (in ), then

It is possible that one side is infinite—in which case so is the other.
(iii) . If and the are uniformly

bounded then (A.8) holds.

Let and be real-valued non-negative mea-
surable functions. Then
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DefinitionA.94.

1

1 1

Exercise A.95.

Exercise A.96.

Theorem A.97 .

Remark.

Theorem A.98.

(ω) (ω) > µ(ω) .

(ω) >
µ ( )

µ
µ(,) <

(ω) µ (ω) µ.

( )

( ( ))

(ω) µ(ω) <

(ω , ω )
, ,

(ω , ω ) µ(ω , ω ) (ω , ω ) µ (ω ) µ (ω ).

(,, , µ) > / /

(ω) (ω) µ (ω) µ (ω) µ

( (ω) (ω)) µ (ω) µ (ω) µ

Acollection of real integrable functions is called uniformly
integrable if

as

Let be an integrable function on
. Then with the notation of Definition A.72

Let and be measurable, positive functions on the measure
space . Let and define . Then Holder’s inequality
states:

and Minkowski’s inequality is:

sup [ ] 0

The point is that this convergence is uniform over all functions in this col-
lection. As a consequence, the integral converges to zero if we replace the in-
dicator [ ] with [ ], where are any measurable sets with
lim 0.

Let be uniformly integrable and suppose is finite, that is
. Show that, if and is integrable, then

Hint: first approximate by truncating above and below , then use uni-
form integrability to show the error is small as .

Let be a real function so that as . Then

sup implies is uniformly integrable.

(Fubini, Tonelli)

This is just part of what is usually called “Fubini’s Theorem.” In ad-
dition, this theorem applies to product Lebesgue spaces, and in general to spaces
where the notion of completeness is required. See, e.g., [Roy §12.4].

1 1 1 1
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Probabilistic notions.

Definition A.99.

Definition A.100.

Definition A.101 .

Definition A.102.

Definition A.103.
1

Exercise A.104.

1 1

1

Definition A.105.

If 2 (so that 2 also), the first is the Schwarz inequality.

In the rest of this section we consider only probability measures.

:

Bayes’ Rule
0

Let be a sub -field of , denoted : this means that is a -field, and
every set in is also in .

A conditional expectation is unique, but only up to changes on sets of proba-
bility zero.

[ ]

Let and be events. Reconcile Definitions A.101 and A.103
by showing that

[ ] [ ] w.p. 1.

Show that w.p. 1, [ ] for any integrable random variable .

The collection of sets

is called the -field generated by the random variable .

Events and are called statistically independent or simply
independent if . The -fields and are independent
if every pair of events and is independent. Random variables
and are called statistically independent if and are independent.

The conditional probability of the event given
the event , where we assume , is defined to be

Let be an integrable random variable. The conditional ex-
pectation of given a -field , denoted , is any random variable
measurable with respect to , so that

for all in

If then we denote also .

The conditional probability of an event given a -field
is defined through .

Let be a sub -field. is called a regular conditional
probability given if
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TheoremA.107.
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1

Theorem A.109.

TheoremA.110 .
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σ
( )

( ) <

( ( ) ) ( ) ( )
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( ) φ( )

( α) φ(α)

( α) (α) (ω) (ω) ( ).

σ

( ) ( ) ( ) .

( )

σ

( ) ( ) ( )

[ ]

Thus conditional expectation is a form of an integral. A common pitfall is that
regular conditional probability may not exist, since the number of null sets in the
definition may be so large that they accumulate to an event with non-zero proba-
bility. This does not happen with distributions on : [Br §4.3].

Linearity.

0

(Smoothing)

(i) -a.s., for each .
(ii) For each , is a probability measure on .

Let be a random variable with range in and a
sub -field of . is called a regular conditional distribution of given
if
(i) -a.s., for each .
(ii) For each , is a probability on .

Let be a random variable with range in and a sub -field
of . Then there exists a regular conditional distribution of given .
Let be a Borel measurable function from to so that . Then

a.s.

Let be a random variable with range in and let
be a random variable with range in . There exists a Borel function
from to so that

-a.s.

Define . Then

for all

Let and be real, integrable random variables and a
-field. Then
(i) For any scalars and we have ( -a.s.)

(ii) If is nonnegative then w.p. 1.

Let be a real, integrable random variable, and let
, be -fields with . Then

w.p. 1.
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The following theorem is sometimes called Chebycheff’s Inequality, in partic-
ular when and is positive.

(Markov inequality)

0

9

(Jensen’s Inequality)

10

1
[ ]

1
[ ] 11

(Union bound)

12

In particular, by Exercise A.104, .

Let and be nonnegative random variables and as-
sume a.s., that is is increasing in and converges to . If then
for any sub -field ,

-a.s.

Let be a sequence of i.i.d. (independent identically
distributed) random variables. Then the strong law of large numbers states that

w.p.1 provided

The central limit theorem states that if then the distribution of

converges to the distribution of a standard normal random variable.

Let be a non-negative, monotone non-
decreasing function and a random variable. Then for any number such that

,

Let be a convex function and a ran-
dom variable. Then, provided the right-hand side is well-defined,

If is strictly convex and is non-degenerate (i.e., not a constant) then the in-
equality is strict. Moreover, for any set ,

Let be any sub -field. Then, provided the right-hand side is well-defined,

-a.s.

Let be events. Then
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Lemma A.116 .

Theorem A.117.

1

Example A.118.

1

A A
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A B
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a N
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A a d A N
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x x d a x d x d
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A z z A

N a z z
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( ) < ( ) .

( ) ( ) .

,,
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( ) (ω) (ω) ( )

( ) (ω) ( ).

<

(ω) (ω) (ω) (ω) (ω) (ω) (ω).

(ω)

.

( ) .

/

Let be events. Let
for infinitely many . Then

implies

If in addition the events are independent, then

implies

There exist random variable and event so that
(i) ,
(ii) For any event ,

which can also be written as

(iii) If in addition is any random variable so that , then

(Borel-Cantelli Lemma)
:

0

1

Let and be probability measures on .

0

[ ]

The random variable is called the Radon-Nikodym derivative of with re-
spect to , and the standard notation is

Let be any positive random variable with finite mean , and
any probability measure. Define the probability measure through

[ ]

Then and .
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Exercise JFF A.119.

Example A.120.

1

Example A.121.
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N d A d

N d i d x i
i a p a i d
x q a i p

a i
q
p

i d

a
N

F F f

g

g x dF x g x f x dx

f x
f x

g x f x dx

f x
f x

g x dF x

a x
f x
f x

dF dF dF dF
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dF dx

If is the distribution of , then the measure defines in
Example A.118 is called the renewal distribution associated with . Show that
when is exponential, i.e., then . Compute in
the case is uniform on [0 1]. Show that if has a density and then
is exponential.

Consider the discrete case; 1 2 . Fix the prob-
abilities 1 2 and 1 2 with

0 and 0 otherwise, and with 0, and 0 otherwise. Then
from Theorem A.117(i) we obtain . The choice in Theo-
rem A.117(ii) now gives . For 1 let [ ]. Setting

1 we get 0 1 , so that 1 0. Finally, with 1 we have
so that the Radon-Nikodym derivative is

1 1

As might be expected, the value of is undefined (and indeed is of no conse-
quence) on .

Let the distribution functions and have densities . As-
sume that the densities have the same support; i.e., they both vanish at the same
places. Then for every bounded function we have by definition

so that the Radon-Nikodym derivative is

That is, in the Radon-Nikodym sense is equal to in the usual
sense of calculus, which is
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Definition A.123.

Definition A.124.

Theorem A.125.

Definition A.126.

Exercise A.127.
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, (,, )
σ > σ

( ) σ ( ),

. ( . )

τ ( )
τ τ

σ σ

, τ .
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( ( ), )
( ) (,, )

( ( ) ) ( ) < .

( )

( ( ) ) ( ) <

( ) ( )

( ( ), )
( ( ), σ ( ), ) ( )

Most of the material in this section can be found in Breiman [Br], and all can be
found in the more advanced (and more detailed) book by Liptser and Shiryayev
[LiS]. We shall consider only processes on [0 that are either right-continuous
(w.p. 1) (Definition A.52), or are discrete-time processes, and take values is :
only these arise in this book. This will also obviate a (rather large) number of mea-
surability issues that arise otherwise. Note that the assumption of right continuity
cannot be dispensed with, but will not be restated below.

0

0

13

0

: 0

min

min

Establish the following. If is a martingale then so is
, but the converse may not be true. If both and are

submartingales, then is a martingale.

We say that is a stochastic process
on with values in if is a random variable for each . It is called
a measurable stochastic process if it is (jointly) measurable as a function of the
arguments .

A filtration on is a sequence of increasing
-fields (that is, if ), all of which are sub -fields of . The filtra-
tion generated by the process is . A filtration is
called right-continuous if

A random variable is a stopping time for the process if
for every , . We allow with positive probability. The
stopped -field, denoted , is the sub -field of

for all

If and are both stopping times then so is .
The degenerate random variable , a constant, is a stopping time. If is a
measurable process then is a measurable process and, at a fixed ,
is measurable with respect to . If in addition a.s. then is a
random variable.

The pair , where is a stochastic process and is a
filtration, is called a martingale if, for each , is a random variable on
(i.e., it is measurable with respect to ), is integrable and

-a.s. for all
is often deleted from the notation. If is real-valued and

-a.s. for all
then is called a submartingale. If the inequality is reversed ( ) then is
called a supermartingale.
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(Martingale convergence theorem)

sup max 0

0 0

(Optional sampling) [LiS pp. 60–61, EK p. 61]

min min

lim [ ] 0 14

min

Let be a martingale and a stopping time. If (A.14)
holds then min is a martingale, so that 0 .

(Martingale inequality) [Br §14.3]
[0 ]

sup 15

0

16

Let be a right-
continuous real-valued submartingale. If

then there exists a random variable so that a.s. as . Assume
in addition that is uniformly integrable. Then
as , and if is in fact a martingale then a.s. for all .

Let
be a submartingale and let and be stopping times with a.s. Then for
each finite ,

a.s.
If a.s., , and

then
a.s.

If is uniformly integrable then so is .

If is a right-continuous
real-valued martingale on , then

A pure jump process is a right-continuous, piecewise constant
process.

A point process can be described in the following equivalent
ways.
(i) A sequence of time points so that each is a random variable and

a.s. These points represent the times the events occurred.
(ii) The associated counting process: a pure jump, integer-valued, nondecreasing

process , so that

number of points so that

A stochastic process with values in is called a Markov pro-
cess if for any Borel set in and any ,

a.s.
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In naming 0 a process we imply that is adapted, that is, for
each , the random variable is measurable with respect to ; however, could
be strictly larger than . We need to treat simultaneously all possible starting
positions for the Markov process, especially in order to define below the strong
Markov property. For that, we need the notion of universal measurability: for our
purposes it suffices to note that any Borel measurable function is also universally
measurable. Moreover, when the state spaces of interest are discrete and countable
(as in most cases of interest to us), the whole question of measurability can be
ignored. Nonetheless, let us state the precise definitions.

0

0

17
0 1 18

0

0

0

0

We have avoided quite a few technicalities by assuming that all sample paths
of the process are right continuous, and that the filtration is right continuous.

0

More generally, let be a given (initial) distribution and a probability
space. The process is called a Markov process with initial distri-
bution if (A.16) holds with replacing , and in addition

.

A Markov family is an adapted process to-
gether with a family of probabilities , with , so that (A.16) holds, and
in addition, for all , Borel sets of and , and all ,

is a universally measurable function of ,

-a.s.

a.s.,

that is, the last equality holds outside a set so that .

Let be a right-continuous process with a right-
continuous filtration (Definition A.123). It is called a strong Markov process with
initial distribution if, for any Borel set of , and, for
every stopping time (of ),

-a.s.

Such a process together with a family of probabilities is a strong Markov fam-
ily if, in addition, (A.17) and (A.18) hold, and

a.s.,

that is, the last equality holds outside a set so that .

Let satisfy the right continuity condition of Def-
inition A.136. Then it is a strong Markov family if and only if for all stopping
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Theorem A.138 .

Definition A.139.

Definition A.140.

Definition A.141.

Theorem A.142.

times , all , all and Borel sets of , one of the following holds:

for all bounded continuous functions .

A pure jump Markov process is strong
Markov.

A jumpMarkov process is called countable or finite according
as the number of possible values it takes is countable or finite.

incidence matrix

A countable or finite jump Markov process is called irre-
ducible if, for some state ,

for all . It is called ergodic if for each pair of states ,

For a jump Markov process on with rates for
jump from to , define as its invariant probability measure
(provided it exists). That is, satisfies

If is an ergodic countable (or finite) jump Markov process
then it has a unique invariant probability distribution. If is a finite (not neces-
sarily ergodic) jump Markov process then it has at least one invariant probability
distribution (but it may not be unique).

0

19

20

In fact, we can avoid most of this pain by noting the following.

[Br Prop. 15.25 p. 328]

Thus the processes we investigate in Chapters 4–8 as well as in most of the ap-
plications are all strongMarkov processes. In fact, our processes are even simpler:
they are continuous-time countable-state Markov processes.

Countable or finite jumpMarkov processes are defined through (4.4), §4.2. The
of the process is then the matrix whose entry equals one

when 0 and is zero otherwise.

inf 0 : 1

inf 0 :

Note that irreducibility can be determined from the incidence matrix. For pro-
cesses in discrete time or when the state space is not countable, the corresponding
definition is much more involved.

1

0 1

That is, under this distribution on the states, the rate of transitions out of each
state equals the rate of transitions into that state: these are “balance equations.”
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The transition semigroup.

B.1. Generators and Transition Semigroups

Appendix B

Discrete-Space Markov Processes

( , ) ,
( , ) ( , )

( , ) . ( . )

( , ) ( , )

( , )

( ) ( )

( ) ( , ) ( ) ( , )( ( ) ( )), ( . )

( , ) ,

( . )

E

x E
y

x y a x y x y
a a x x

a x y B

a x x a x y L
L a x y
L gen-

erator
f x E L f x

L f x a x y f y a x y f y f x B

transition semigroup
T p x y t

T T T B

by Robert J. Vanderbei

In this section we introduce the basic concepts of continuous-time Markov pro-
cesses with discrete state space . We assume that the reader has some familiar-
ity with Markov processes and that this section serves mostly as a review. A good
reference for this material is Dynkin [Dy].

In the discrete-space setting, Markov processes are especially easy to grasp. Basi-
cally, if the process is at some state , then it will sit there until an exponential
clock ticks, at which time it will jump to a new state . The exponential clock that
controls jumps from to ticks at rate 0 . To make an entire
array out of , we define so that

0 1

That is, . We let denote the array that these rates
make: [ ]. To reduce technicalities, we assume throughout that each
row of has only a finite number of non-zero entries. This array is called the

of the process. We will deal with the generator as a linear operator acting
on functions defined on the state space. So, if is a function on , then
is the function given by

2

where the second formula follows from (B.1).

For discrete-space continuous-time Markov processes, the generator gives the
most natural and simplest description of the process. However, there is a related
construct that is also important. It is called the . It consists
of a family of linear operators [ ] 0, that satisfy the following
properties:

3
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lim 7

[where the first condition means that ]. Equa-
tion (B.4) means the operator maps positive functions to positive functions. In-
tuitively, the quantity represents the probability that at time the process
will be at given that at time zero it was at .

There exists a one-to-one correspondence between generators and transition
semigroups. Namely, given a generator , the corresponding semigroup is given
by

!
Conversely, given a transition semigroup , the generator is

lim 8

There is one more representation for discrete-space continuous-time Markov pro-
cesses that works when the jump rates are uniformly bounded: max

. Let be a positive real number that dominates these rates and put

It is easy to see that is nonnegative and has row sums equal to one (i.e., it is a
stochastic matrix). A simple calculation shows that

!
9

This is called the uniformization theorem. The interpretation of the right-hand
side is that there is a single exponential clock that ticks at rate and every time
it ticks, a jump occurs according to the stochastic matrix . Hence, at time , the
number of times this clock has ticked is a Poisson random variable with parameter

and so the chance that there have been jumps is the Poisson probability that
appears in front of in (B.9). If this result seems surprising (in particular the
fact that can be chosen arbitrarily large), it might help to bear in mind that the
stochastic matrix allows jumps from a state to itself.
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So far we have talked about analytical objects that characterize a Markov process
but we have yet to introduce the process itself. An actual Markov process consists
of several objects. First we need an event space . For discrete-space continuous-
time Markov processes, the construction of is quite simple. All we need is a
space on which we have defined all the exponential clocks that were mentioned
above. Next, we need to construct the trajectories of the process. repre-
sents the position in the state space at time . Its construction simply follows the
description that we gave above in terms of exponential clocks and jumps between
states. Corresponding to each possible starting point , there is a probabil-
ity measure on such that the probability of being at states at the
times given that the process starts in state is given by

Finally, we need to introduce a family of -algebras 0 representing the
events that are observable up to time . One should think of as the -algebra
generated by the random variables (however, to be precise, we want
the completed right continuous modification of this family, whatever that means).
The process is quite simple in that it remains fixed at a point in for an interval
of time and then it jumps to another point in . It will turn out to be important that
we make the convention that at the instant when a jump occurs, the process is ac-
tually at the new point, not the old one. That is, we are assuming that the process is
right continuous. It turns out that in the general theory of stochastic process, func-
tions of time should be right continuous with left limits. We call such functions
RCLL. All the functions of time that we will consider will be RCLL and in fact
will generally be piecewise constant or an integral of a piecewise constant func-
tion. An important property of the family of -algebras is that it is increasing:

This captures the intuitive notion that as time progresses, the
history of the process increases. Such a family of -algebras is called a .

Now that we have a Markov process to work with, we can begin writing proba-
bilistic formulae. For example, the transition semigroup has the following inter-
pretation:

10

where represents expectations calculated using the measure . As another
example, the Markov property which was already visible in (B.3) has the follow-
ing more sophisticated form:

[ ] 11

Although this form of the Markov property is sufficient for many purposes, it is
not the most general. Indeed, even though we have conditioned on the entire past
in (B.11) we have considered only a very specific type of future event, namely

the types that involve only a fixed time in the future. In order to formulate a more
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Stopping times and the strong Markov property.

Semigroup calculus.

E
X t X

X X s B

Z Z B
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Y Z Y Z Y Z B

t
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d
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T f x
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f x T L f x

T f x f x T L f x ds B

" ω "
, )

(ω) ω "
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"

θ (ω) (θ ω). ( . )

θ ( ) ( ).

( )

θ , . ( . )

θ , , . ( . )

τ

θ , . ( . )

( )
( ) ( )

( ) ( ).

( ) ( ) ( ) . ( . )

all-encompassing version of the Markov property, we need a convenient way to
represent future events. To this end, it is convenient to assume that the probability
space is actually the space of RCLL paths. That is, a point is a function
from [0 into that is right continuous and has left limits. Hence, the random
variable is simply the evaluation map at time : . On this space ,
we introduce a one-parameter family of shift operators:

[0 12
This transformation on induces a transformation on random variables according
to the following formula:

13
Using (B.10), (B.12), and (B.13), we see that (B.11) can be written as

[ ]
A more general form of the Markov property says that we can replace in
the above formula by a general random variable:

[ ] 14
By the definition of conditional expectation, (B.14) is equivalent to

15

We will at times need to apply the Markov Property not at fixed times , but at
random times . The property is not true at all random times but it is true if the
random time does not look into the future. Such random times are called

(Definition A.124). All of the obviously non-clairvoyant random times are
actually stopping times.
The strong Markov property says that (B.14) and (B.15) are true even when

is replaced by a stopping time:
[ ] 16

There is a similar form analogous to (B.15).

Formula (B.8) says that the generator is the derivative at time zero of the semi-
group. Derivatives at later times are almost as simple:

lim lim

Hence, the fundamental theorem of calculus gives us the following important
semigroup identity:

17
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Written probabilistically, (B.17) becomes

18

Fix a function defined on the state space and define a family of linear op-
erators according to the following formula:

exp

Using the Markov property (B.15), it is easy to see that satisfies (B.3). In fact,
it also satisfies (B.4), (B.6), and (B.7). Hence, it makes sense to define a generator
for just like we would for a transition semigroup. A simple calculation using

the fact that

exp 1

shows that

Now, given any function , if we pick and ,
then 0 and so (B.17) implies that . Rewriting this prob-
abilistically, we get

exp 19

This formula can be thought of as the multiplicative counterpart to (B.18).

Suppose that , the -dimensional integer lattice, and that there is a finite
collection of step directions 1 , and that the transition rates are

if for some ;
0 otherwise.

In this case the generator takes the following simple form:

20

Eventually, we will only consider Markov processes that are multidimensional
birth-death processes.
For these processes, we introduce a little more notation. Let be the number

of times up to and including time that the process steps in direction . The
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process is called the for the steps in the direction. It is easy
to recover from knowledge of all the counting processes:

Most Markov processes that arise in queueing models are of this type. For ex-
ample, the queue length process in an 1 queue is the process on the non-
negative integers that takes steps to the right at rate and steps to the left at rate
as long as 0. Hence, for this case, we may take 1, 1, , and

1 . Another example from queueing theory is two queues in tandem. In
this case the state space is the non-negative quadrant of , 1 0 represents
arrivals to the first queue which occur at rate , 1 1 represents
transfers from the first queue to the second which occur at rate 1 ,
and 0 1 represents service completions at the second queue which occur
at rate 1 .

Now suppose that and that for some function
. In this case, has the following form:

This process has a particularly simple description. Indeed, from the uniformiza-
tion theorem, we see that is a Poisson sum of independent random incre-
ments:

Here is a Poisson random variable with parameter and is a
random increment that takes value with probability .
Specializing even further, suppose that the state space is the integers and that

1 2 for 1 and zero for other values of . Then,

1 2 1
2

This process is called a . For a simple random walk, is
Poisson with parameter one and the take values 1 with probability 1 2.
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additive functional

If is an additive functional, then is a martingale with re-
spect to every measure .

Recall that, for a process 0 to be a martingale with respect to a filtration
0 and a measure , each must be integrable against the measure

and measurable with respect to and the process 0 must satisfy the
martingale property:

[ ] 0

Generally whenwe claim something is amartingale, the integrability propertywill
be left to the reader to check, the measurability property will be completely obvi-
ous, and the martingale property will be shown.
In this section, we will introduce several martingales associated with a Markov

process. In later sections, we will then apply certain martingale theorems to these
martingales to help us prove large deviations results. The results that we will need
about martingales are collected in §A.5.

An is a real-valued process , 0 , that satisfies the
following properties:

21
22

0 for all 23
24

The simplest example of an additive functional is

In this case, properties (B.21)–(B.24) are all perfectly straightforward except per-
haps (B.23) which follows from (B.17).

. The fact that is a martingale follows from the defining properties of
an additive functional and the Markov property of the filtration :

[ ] [ ]
[ ]
[ ]
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linear martingales

If is a multidimensional birth-death process with jump rates
, then for every

is a martingale. In addition, is an additive func-
tional.

This completes the proof.

From this result, we see that

25

is a martingale. We will call such martingales the associated
with the Markov process .

. It is easy to see that satisfies all the properties to be an additive func-
tional except perhaps (B.23). Thus the second claim follows from the first.
Let denote the coordinate of . Fix , and define the 1 dimensional

process by

Then is a birth-death process. Its jump rates agree with those of , and by
(B.2)–(B.1) its generator is given through

[ 0 ] [ 1 ]

for any real function on , where denotes the first coordinates of . Now
choose , the 1 coordinate of . Then by the comment following
Theorem B.1,

is a (linear) martingale.
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Multiplicative functionals.
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multiplicative functional

If is a multiplicative functional, then is a martingale with
respect to every measure .

exponential martingales

A is a real-valued process , 0 , that satisfies
the following properties:

26
27

1 28
0 29

30

The simplest example of a multiplicative functional is

exp 31

In this case, properties (B.26)–(B.30) are all trivial except (B.28) which follows
from (B.19).

. The result follows easily from the defining properties of a multiplicative
functional and the Markov property:

[ ] [ ]
[ ]
[ ]

This completes the proof.

From this result, we see that

exp 32

is a martingale. We will call such martingales the asso-
ciated with the Markov process .
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As an example of the utility of the linear martingale, we briefly describe its con-
nection with the Dirichlet problem. Let be a subset of and consider the fol-
lowing boundary value problem:

0

We call this the Dirichlet problem. When the space is Euclidean and the operator
is the Laplacian, this boundary value problem is the classical Dirichlet problem

(that’s what we’d get if the Markov process were Brownian motion — it’s also
why the generator is denoted by ). Suppose we have a function that solves this
problem. Let’s see what the optional sampling theorem A.129 says when applied
to the linear martingale, and is the first time exits the domain :

33

The integral vanishes since, before time , 0. Also, at time , the pro-
cess is in the complement of and so can be replaced by in the first term (we
have used the right continuity of the process here). The right-hand side in (B.33)
does not involve the function . This proves that the solution to theDirichlet prob-
lem is unique. To prove existence, it suffices to check that the function defined by
the right-hand side of (B.33) actually is a solution of the problem. This is an easy
exercise using the Markov property that we leave to the reader.
If we choose 1 , then (B.33) reduces to

Hence we see that the Dirichlet problem is closely related to finding exit distribu-
tions from domains.
A related problem is to find the expected exit time . An analysis

similar to the one above shows that is the unique solution of the following
inhomogeneous Dirichlet problem:

1
0

34

Sometimes these Dirichlet problems can be solved explicitly, but even when they
can’t, they yield efficient numerical methods.
This kind of probabilistic analysis of boundary value problems is the basis of a

branch of mathematics called probabilistic potential theory. We have only given
the briefest exposure just to give a quick appreciation for the value of the linear
martingale.
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The Feynman-Kac formula.

Change of measure.

Proposition B.4.

Proof
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If is a multiplicative functional, then the operators
defined by (B.39) form a transition semigroup and

For a moment let’s consider the Shroedinger equation:
35
36

Again, let be the first exit time from and apply the optional sampling theorem
to the exponential martingale (B.32) to get that any solution to (B.35), (B.36) must
be given by

exp 37

This proves uniqueness and as before existence is proved by verifying that the
formula given by (B.37) is indeed a solution.
There is one special case of (B.37) that deserves mentioning. When the func-

tions and are actually the constants one and , respectively, then (B.37) be-
comes

Therefore, solving (B.35), (B.36) gives us the Laplace transform of the first exit
time from a domain. This result is often useful.

Multiplicative functionals are useful for changing measure in such a way that the
Markov property is preserved under the new measure. Let be a multiplicative
functional. We fix a finite time horizon and consider the process only on the
interval 0 . For each , let be a new measure on defined
by

38

where denotes expectation calculated using the measure . From (B.38), we
see that is absolutely continuous with respect to , and the Radon-Nikodym
derivative is simply (§A.4). Now for 0 , define a linear operator
as follows:

39

0
40

. We start by proving (B.40). Using the fact that is a martingale, we see
that

[ ]
[ ]
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If, under the measure , is a multidimensional birth-death
process with step directions and step rates , then under the measure
the process is again a multidimensional birth-death process with the same step
directions and with the rates changed to

All the properties that have to be satisfied to be a transition semigroup follow triv-
ially from the fact that is positive and has mean one except the most important
property, , which we now verify:

[ ]

Here, the first equality follows from (B.40), the second from the Markov prop-
erty (B.15), the third from the definitions (B.12) and (B.13) of the shift operator,
and the fourth from the multiplicative property (B.26) of . This completes the
proof.

Since starting with a semigroup, say , there is, for each , a unique mea-
sure on the space of right-continuous paths such that (B.39) holds, it follows from
Proposition B.4 that is this unique measure. The next theorem shows that mul-
tidimensional birth-death processes are invariant under this change of measure.

41

. To prove this, we calculate the generator of . With overwhelming prob-
ability, the process (relative to the original measure ) will have taken at most
one jump in a small amount of time . Hence, using (B.40) and (B.31), we get

exp exp

exp exp

exp

In the second summand we have a jump at in direction , and no further jumps
until . The first two terms give the probability of this event. From this simple
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calculation, using (B.20) we see that

lim
1

Hence, the new process is a multidimensional birth-death process with the same
jump directions and with jump rates given by (B.41).

It is interesting to note that there are generally not enough degrees of freedom
in (B.41) to be able to get all sets of rates by appropriate choices of .
But it turns out that we can write the Radon-Nikodym derivative purely in
terms of and that, once we do this, we get a derivative that is correct even
if there is no function connecting the old and the new rates. So, start by as-
suming that and are related through (B.41) for some . Since is piece-
wise constant, we can write the difference log log as the sum of
the changes over the jumps:

log log log log

log

log 42

where is the counting process that is incremented every time a jump occurs in
the direction. Now, using (B.41), we see that

1

43

From (B.43) and (B.42), we see that
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Let be a multidimensional birth-death process with step di-
rections and step rates and let denote the corresponding measure on
the space of trajectories. Let be an arbitrary set of transition rates and let
be a new measure defined by (B.38) with defined by (B.44). Then, under

this new measure, the process is again a multidimensional birth-death process
with the same step directions and with the rates changed to .

exp log log

exp log

44

Equation (B.44) defines a change of measure that maps the multidimensional
birth-death process with rates into a process of the same type but having
rates .
Note that formula (B.44) for involves the function only indirectly through

formula (B.41). This leads us to the question: Does (B.44) define a change of
measure that maps the process with rates to the one with rates , even
when (B.41) does not hold? The answer to this question is yes. Indeed, instead
of specifying a function , we start with desired rates . We formulate this
result as a theorem:

. Define by the formula:

exp log

45
We need to show that is a multiplicative functional. All of the defining proper-
ties are trivial except (B.28) which can be checked by direct calculation. Indeed,
using the law of total probability, we get
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where, for notational efficiency, we have put , ,
0, and . This formula may look messy, but it is easy to explain. The
first line corresponds to partitioning the sample space into small pieces. One piece
is a trajectory that makes steps up to time , with the steps occurring at times

, and the step being in the direction . The complicated product
on the second through fourth lines is the likelihood of this trajectory. It too is easy
to explain. The first factor, exp , represents the probability that
nothing happens in the interval [0 , the second factor, , represents
the probability that a step in direction occurs exactly at time , etc. Finally,
the last line is the integrand evaluated on this specific trajectory. Now, note that
the last line cancels with the previous lines in such a way as to change the previous
lines into a formula of exactly the same type but with the s replaced by s:



E
n n

n

514

< < < <1 2 1

1

2

··· ≤ = =

− −

−

0
0 1 1

1 0 0 1

2 1 1 1 2

1 1

1

= · · · · · ·

−

× − −

− −

× − −

M

s x x ds

s s x x ds

s s x

x ds t s x

∑ ∫ ∫ ∑ ∑




∑








∑








∑








∑





x
t

n s s s t

m

j

m

j

j
j j

j
j j

n n
j

j n

j n n n
j

j n

µ ( ) µ ( )

( ) µ ( ) µ ( )

...

( ) µ ( )

µ ( ) ( ) µ ( ) .

µ

Appendix B. DISCRETE-SPACE MARKOV PROCESSES

exp

exp

exp

exp

But, again by the law of total probability (now using s), we see that this is exactly
equal to one. Even though this calculation is rather tedious, we have included it so
that the reader will see that for multidimensional birth-death processes everything
can in principle be calculated explicitly.
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Appendix C

Calculus of Variations

C.1. Heuristics of the Calculus of Variations

To be able to compute things using large deviations, we need to be able to get in-
formation from the resulting variational problems. This chapter collects the ba-
sics and a number of tricks that make it easier to extract information from, and
sometimes even solve, the variational problems. The functionals we minimize
are integrals: we shall denote the integrands by , and shall use only when we
specialize to the local rate function (that is, when we need the special properties
of this function). Section §C.1 provides a heuristic derivation of the basic tools:
Euler’s Equation and the transversality condition. In §C.3 we derive a general ap-
proach for one-dimensional level crossing problems. The effort of this indepen-
dent derivation is worthwhile since the classical elementary treatment in calculus
of variations, e.g., [Els, Ew] is restricted to paths that are differentiable, except
possibly at a finite number of points. However, we do not know a priori that the
optimal solution of our problem satisfies such a condition. In general, the techni-
cal conditions imposed by general results on the calculus of variations are fairly
strong—see §C.4 below. In particular, conditions under which a candidate solu-
tion is indeed the global minimum are usually complicated. On the other hand,
the one-dimensional level crossing problem is simple enough so that we can get
simple, explicit conditions. In §C.4 we state the precise theorems from the calcu-
lus of variations we need for more general variational problems; that is, problems
that are not one-dimensional as well as problems that are not of the level crossing
type.

Fix and a function and define, for any absolutely continuous function ,

The “simplest problem” of the calculus of variations is the problem we call “the
level crossing problem.” It is the problem of minimizing over all absolutely
continuous functions that satisfy

1

with fixed. We shall often be interested not only in calculating the minimal
value, but also in identifying a function that achieves that minimum. Here is a
heuristic derivation of the Euler necessary conditions for optimality of a function
.
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Let us perturb a candidate optimal function in the direction of some function
and in the amount . To satisfy the boundary conditions (C.1) we must have

0

Consider now the function of the real variable

For to be a minimizer it is necessary that the derivative of vanishes, namely

0

Differentiating under the integral sign we get

0

Integrating the second term by parts,

since 0. We obtain, for all such ,

0

But this must hold for all , hence the term in square brackets must vanish for
(almost) all , and we obtain the Euler necessary conditions

0 2

In the special case that does not depend on the first variable, we immediately
conclude that

0

or

constant

From (C.2) we obtain a useful variation, as follows.
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Therefore, (C.2) implies the DuBois-Reymond Equation:

constant 3

Next consider the case where is free, that is, we wish to minimize over all
with and , but also over all possible values of (assume

). Then the Euler Equation (C.2) is still a necessary condition, obtained
from the optimality property in at the best value of . We now derive an addi-
tional equation, obtained from the optimality in around the best . We need to be
careful here that we only consider functions satisfying the boundary conditions!
So assume is defined on [ 1] and consider 0; the calculation for 0
is almost identical. By definition : to satisfy the boundary condition at

we need to to choose the perturbation function so as to compensate for the
fact that, generally, . So let be a function with

0 0

Then satisfies the boundary conditions

(at least to first-order approximation), and can (and will) be chosen linear in .
[Note that we cannot simply choose as this would not work
for 0.] Taking derivatives and equating to zero now yields

But by the argument in the case of fixed we know that the second term is zero
for all , except that in the integration by parts we no longer have 0.
Thus we obtain
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C.2. Calculus of Variations and Large Deviations
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Assume is a good rate function, and consider the variational
problem

where is a closed set so that . Suppose there is a set so that

Then is not empty, and if contains exactly one point then solves
the variational problem. That is, and .

and substituting for the value of we obtain

0 4

This condition is called the “transversality condition.”

The reason we want to solve problems in the calculus of variations is that the solu-
tions will answer questions about probabilities. However, solving problems in the
calculus of variations is notoriously difficult. There are questions of existence of
solutions, and most of the results are characterizations (necessary conditions), as
will become clear in §C.4. But don’t despair! We are fortunate on several counts.
First, some properties of the rate function that we derived will address the exis-
tence problem, and many special tricks will come to the rescue.

Our approach to the variational problems will go as follows. First, the ques-
tions we are interested in are such that existence will be automatic due to lower-
semicontinuity and compactness (see Theorem C.1 below). Then, we will usually
derive a solution to the Euler equation. Using a variety of techniques, some from
the calculus of variations and some specific to the problem under consideration,
we will then show that this particular solution of the Euler equation is the only one
that can be optimal. This will nail the validity of our formal calculation. Here is
an obvious, if somewhat abstract theorem that formalizes this argument.

inf :

:

The set defines “necessary conditions” for an optimum, in the sense
that any optimal point must be in . However, may contain many nonoptimal
points, and even points outside .

. By Exercise 2.3, there exists (at least one) point in . By the hypoth-
esis, every such point must be in . But there is only one such point .

The next two results concern the function , defined in Equations (5.2)–(5.4)
[or in Theorem 8.19(i), with the obvious definition for ]. They will complement
the Euler equations in making the set of Theorem C.1 small enough so that the
theorem can be applied.
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Assume is differentiable in and that

If the optimal point is differentiable in and is differen-
tiable in near , then

Assume and satisfy (C.5) and (C.6). Then (C.3)
implies [for ] that , for some constant . If in
addition (C.4) holds then .

Suppose that is a good rate function for each . Assume
that there exists a so that the following holds: for each there is a
so that and . Then

5

6

. Taking derivatives we obtain

since the middle term in square brackets is zero as is a maximizer.

0

. By (C.3), for some constant

by definition of . But by (C.6) of Theorem C.2, the left-hand side equals
and the first result follows. If (C.4) holds then by the same argument 0.

In Chapters 5 and 8 we established that the rate functions we deal with are
indeed good rate functions. But our applications often involve “free time” prob-
lems. To be able to use the reasoning of Theorem C.1, we need to establish a priori
that it suffices to look at finite times. So, consider a set of pairs so that
each function is defined on the interval [0 ]. With some abuse of notation,
we will write when we mean . Let be the following set of
functions on [0 ]. A function is in if and only if 0
for some in , and in addition follows for . Thus functions
in are just extensions of functions in . Finally, let be the collection of
functions in but with each function restricted to the interval [0 ].

inf : inf :

inf :
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u u T r u r s f x y x y

r t r t t s
r t u s t s

S S T u s
I r I r r

r
r

t x t t x x
d t
dt

C

If is closed then the infimum is attained.

Consider the problem (C.7), and assume that for each
. If then it suffices to consider strictly increasing functions. If

then it suffices to consider strictly decreasing functions.

. If is an extension of and then ,
since vanishes along paths. The first claim now follows from the assump-
tions. The last claim follows since by assumption, is a good rate function.

Most of our variational problems turn out to be one-dimensional. In that case,
several tricks are available which simplify the computations considerably—often
to the point where analytic solutions are possible. We start with the more general
properties. Consider the following level crossing problem. Given ,

minimize

subject to 0 0 absolutely continuous,
7

where is acceptable. We denote the minimal value by or , and
call this the value of the problem. We say that solves the variational problem
(C.7) if satisfies the boundary conditions at zero and , and .

0

. Pick any absolutely continuous function satisfying 0 and
, and assume that for some 0 . Since is continuous,

there is some [ so that . Since 0 for each ,
the function

,
,

defined on the interval [0 ] where satisfies the boundary con-
ditions and . Thus we can modify any given function until it
is strictly increasing, without increasing the corresponding integral. Note that by
absolute continuity, the number of required modifications is at most countable, so
that the change in the derivative of at these points will not affect the integral.
Now repeat the same construction on intervals where is constant. The proof
when is identical.

For a strictly increasing absolutely continuous function , denote

: and 8

Note that this is well defined since is strictly increasing.
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α < β ( , )
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v( ) α v( ) β

( , v ( ))

v ( )

( , )
, ( . )

v β < α
<

( ) α ( ) β
( )

( )

( ( ), ( ))
( , ( ))

( )

( , )

( , v ( ))

v ( )

(v( ), v ( )) .

v β < α

( , )
( , )

∂ ( , )

∂
. ( . )

*( , ) θ ( , θ)

( , θ) λ ( ) .

*

λ ( ) λ ( ) < ,

Consider the problem (C.7), where . Let for
each and let be a strictly increasing absolutely continuous function with

, . If

then solves problem (C.7). If then the same conclusion holds with “de-
creasing” replacing “increasing” and with the infimum taken over .

Let be a nondegenerate point. Then

0

0

inf 9

0

. Let be any strictly increasing, absolutely continuous function satisfying
the boundary conditions 0 , . By Lemma C.5 the restriction to
strictly increasing functions does not change the minimum. Since 0 for
almost all , changing variables from to we obtain , so

inf

Thus minimizes the first expression. The proof when is identical.

This immediately ties things nicely to the Euler Equation: for suppose is dif-
ferentiable in . Then achieves the infimum only if

1
0 10

Let us now apply the structure of our specific problem. Recall Definitions
(5.2)–(5.4)

sup

1

The following properties of are established in §5.2. Let us say that is a nonde-
generate point if there are positive rates for jump both to the right and to the left
at (or, more concisely, 0 for some ).
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( )
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ε < λ ( ) <
ε

ε > , , α β.
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.

*( , )/
< ( ) < *( , )

( ) *( , ) ( )
( )

( ) α, β

v( )
(v( )).

v (v) >
( )

v

( )

(i) By Exercise 5.27 is strictly convex. It is nonnegative, and by Lemma
5.32 it is finite for each .

(ii) From the proof of Lemma 5.17 it follows that
for some positive constants and .

(iii) Consequently is differentiable (almost everywhere), and (C.6) holds
(for almost every ) with a unique .

Let be a nondegenerate point. There exists a so that

and it is a solution of Euler’s Equation. Assume in addition that is (jointly)
continuous in both variables, that all points in are nondegenerate and that

for some and all

Then there exists a strictly increasing absolutely continuous function satisfying
(C.9).

log

As an immediate consequence we can verify the usefulness of Euler Equation.

0

inf

[ ]
1

0

. Assume first that is differentiable at every point . From Lemma
C.7(ii) we have

as or 0

Thus the minimum cannot be achieved either near zero or for large . But away
from zero, by (i) of the same lemma, is a continuous function, and so it
achieves its minimum at some point 0 . If is differentiable in
at , then (C.10) must hold. Now if is not differentiable at then,

since it is convex, it has a right and a left derivative at that point. In this case,
solves the Euler Equation (C.10) if the derivative is replaced with the appropriate
value, between the right and the left derivatives.
Under the additional conditions, the function exists for all in [ ] (to

be precise, we need to show that can be chosen as a measurable function. This
is indeed possible under the stated conditions. The mathematical tools involved
are “measurable selection theorems.”) Suppose we find a solution to the ordinary
differential equation

Then is strictly increasing since 0. Since the rates are bounded away
from zero and bounded above, it follows from the proof of Lemma 5.17 that
is bounded above and bounded away from zero. Therefore is absolutely contin-
uous. Moreover, the equation

1
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Consider problem (C.7) with and where is given through
(5.2)–(5.4). Assume that all points are nondegenerate, and that is
differentiable in at all points and . For each , the equation

has at most two solutions. If in addition all the conditions of Lemma C.8 hold,
then with the appropriate choice of ,

is well defined for all as is bounded below, and defines a function
that is strictly monotone increasing. But then the inverse function exists,

and is the strictly monotone function determined by [ ] . Both functions
are differentiable due to the bounds on , and differentiating

1
1

so that satisfies the desired relation. Finally, the defining relation gives 0
, and since is bounded away from zero, there is some so that .

In the parlance of convex analysis, if is not differentiable at then zero
belongs to the set of values that are obtained by replacing the derivative with a
subgradient. Such points are isolated and do not affect the analysis. In our appli-
cations the functions will be differentiable, so we do not elaborate on this point.

Under the conditions of Lemma C.8 the conditions of Lemma C.6 are satisfied,
so that solves the variational problem (C.7). We are now ready to derive an ex-
pression for the value of the variational problem, as well as a method to compute
an optimal solution.

0

0 11

12

. Since is strictly convex in , (C.11) has at most two solutions. Let
be a value of that achieves the maximum in the definition (5.2)–(5.4)

of : that such a value exists (and is finite) follows from Lemma C.7. From that
lemma it also follows that (C.6) holds, that is

13

for all . This and the definition of yield

14

for all . Now under the conditions of Lemma C.8 there exists an extremizing
path , and from (C.10), along this path (that is, for all so that, for some ,

while ),

0 15



i

524

β

α

θ

0

0

0

1

1 1
1

∫

∫

∫

∫

∑ ( )

T

T

T

d

i
i

e

i i i

∗

∗
∗ ∗

∗

∗ ′

′
′

′

∗ ′

∗

∞
∗

&

=

∗ ∗

=

=

=

=

=

=

=

=
= = −∞

+ +

♠

= −

≤ =
= +

= −

Exercise C.10.

LemmaC.11.

Appendix C. CALCULUS OF VARIATIONS

y x y

x y x
x y x x

I

I t t dt

t t t dt

t t dt

d

z
x

y x t

k

r T
r T T

y x

g e

d d i e i d e
i d d

y
y y g

For a one-dimensional problemwith some jumps in each direction
the following hold. The function satisfies

> θ ( , )

θ ( , )
θ ( , ) θ ( )

*(v( ), v ( )

v ( )
∂

∂v
*(v( ), v ( ))

θ (v( ))v ( )

θ (v) v

v

θ

θ ( ) *
( ) v( )

α < β
α α

( ) α
( ) β <

α ε α ε
v ( )

(θ) λ ,

< λ > > , . . . , <
, . . . ,

*( )

*( ) θ (θ ),

since 0, so that (C.11) holds along such paths, provided is indeed
chosen to achieve the maximum. However, this equation and the choice of solu-
tion define uniquely for each , so that in fact the condition that we are
along an extremizing path implies that depends on alone. The
definition of together with (C.13)–(C.14) now yields

since is strictly monotone.

The last lemma provides us with a convenient method to calculate the solution
to the level crossing problem. It is often not hard to solve (C.11). Note that 0
is always a solution, and is usually not the one we seek since it corresponds to
following , and thus the boundary conditions will not be satisfied. Using the
fact that the desired is the maximizer in the definition of we can compute

. Lemma C.8 then derives a formula for an optimal path . In our applica-
tions these calculations can sometimes be carried out analytically. This is the case
if 2, that is, there is only one possible jump in each direction. The generic
calculation for this case is carried out in §11.5.

Assume and that the rate of jump to the left goes (say
linearly) to zero at , so that the point is degenerate. Extend all the results of this
section. Hint: it may be convenient to shift the notation and require and
0 , where 0 and is acceptable. Construct solutions to the

problems with boundary conditions and 2 and patch the solutions. The
linear rate will guarantee that the implicit definition of using (Lemma C.8)
is valid.

Now consider the general one-dimensional problem with jumps possible in ei-
ther direction. This process has

1

where and 1 and 0 for all , 0 for 1 , 0 for
1 .
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C.4. Results from the Calculus of Variations
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where is a strictly increasing, continuously differentiable function of
. Consequently, is continuously differentiable.

Consider the Lagrange
problem. Assume is optimal and fix any . Then the function

is optimal for the problem on the time interval with
boundary conditions .

Consider the Lagrange
problem. Assume is continuously differentiable in and let be a (strong)
local minimum which is in the interior of and such that (Defini-
tion A.80) and is essentially bounded (Definition A.75). Then the Euler Nec-
essary Conditions hold; that is,

a.e.

. Under the stated conditions it is easy to see that is, for each ,
differentiable and bounded above in . Taking derivatives to obtain the maximum
in ,

Since each term in the sum is a strictly monotone increasing analytic function,
is a strictly increasing, analytic function of . Its derivative is therefore positive
at each , and the results follow.

Note that an analogue of this result is available in higher dimensions; see Ex-
ercise C.16.

In this section we return to the general setup and use the standard terminology of
the Calculus of Variations (the main reference and the source of notation in this
section is Cesari [Ce]).
We consider the Lagrange problem:

Minimize

subject to

We assume throughout that and are closed, and is the closure of its interior.

(Principle of Optimality) [Ce, 2.1.i p. 27]

: [ ]

When discussing a minimizing we shall assume that the integral is finite at
some feasible point (and in particular the feasible set is not empty).

(Necessary Conditions) [Ce, 2.2.i p. 30]
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∂
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,

and both sides are (a.e. equal to) AC functions. In addition the DuBois-Reymond
Equations hold: for some constant ,

Consider the function of Chapter 5. Let
us replace, in Theorem C.13, the assumption that is essentially bounded by the
following. Assume is integrable on , and in a neighborhood of the graph
of (Definition A.24) we have, for all ,

where and is positive. Then the Euler Necessary
Condition still holds.

If is continuously differentiable in both argu-
ments and satisfies the growth condition of Exercise C.16, and if the AC function
satisfies the Euler necessary conditions than is Lipschitz continuous, so that

its derivative is essentially bounded.

Assume the conditions of both Exercise C.16
and Lemma C.17 hold. Then is a continuous function.

The “a.e.” refers to Lebesgue measure. Note that if is positive (as is the case
with ), then the assumption is superfluous.

[Ce, Remark 1 p. 44]

[ ]

log [ 1]

Prove LemmaC.14 in the followingmore general case. The func-
tion satisfies the conditions of Theorem C.13 (but may not be of the form of
Chapter 5), and is positive and satisfies the conditions

as and

for each and all . Show that the function of Lemma C.14 satisfies these
conditions. Hint: follow [Ce, Remark 2 p. 40 and Remark 1 p. 44].

Assume that are bounded, let be differentiable in
and let be any function on [ ]. Then for each , the function

never takes the same value twice as traverses . Moreover,
as

uniformly in [ ]. Hint: use strict convexity and the uniform growth: see
Lemma 5.17 and Exercise 5.27.

[Ce, 2.6.i p. 58]

[Ce, 2.6.ii p. 58]
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Appendix D

Large Deviations Techniques

, , . . .

φ (θ) (θ ) . ( . )

/ , , . . .

φ (θ) (θ ) (θ ) (θ).

( ) <

(θ) (θ )

θ >

(θ ) (θ ) (θ ), ( . )

,
θ < θ , θ

θ < (θ) (θ ) >
θ

The effective domain of a function is .

For any random variable , the function is
convex on , and is convex.

The results in this section are of two types. We provide some methods and ap-
proaches that are useful in proving large deviations results, but that will not be
used in this book. In addition, we quote without proof some state-of-the-art re-
sults.

The idea here is to prove the large deviations bounds in by using properties
of moment generating functions. This turns out to be quite useful when the ran-
dom variables of interest are not i.i.d., but are close to it in some sense; see Exam-
ple D.10 and Exercise below. This is a powerful technique even in the i.i.d. case
in . Since we only intend to illustrate the method, we shall restrict the proof to
.
Given a sequence of random variables, define

1
log exp 1

We will estimate the asymptotics of . Note that if are i.i.d. and
then

1
log exp

1
log exp log

:

log exp

. Note that 0 and that, for 0,

exp 1 exp 1 exp 2

where max 0 . Since the right- and left-hand sides of (D.2) are monotone
increasing in , we conclude that if 0 then [0 ] . A similar
argument applies to 0. Thus is convex. Since exp 0 for
each , theMonotone Convergence TheoremA.91(ii) establishes that and hence



528

D
D D

D

E E E

E

E E E

P

! !

!

!

→∞ ∈

!

!

θ θ θ

θ

θ/ θ/

θ

,

θ

θ

( )

( )

( )

( )

{ } { ( ) }

⋃{ }

2

2

2 2

2

2 2 2 2 2

1 2

1 2 1 2 1 2

[ ]

f
f f

z z z

z

z z

n n

n
n

n n n n n

I

n

n
x a b

Appendix D. LARGE DEVIATIONS TECHNIQUES

=
−

= = ≥

=
+∞

≡

+ − = + − ≤ + −

= −

−∞ ∞
∩ ,= ∅

∈ ≤ −

= { ≤ ≤ }

⊂ − = − −

= − −

is convex.

.
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Lemma D.4.

Proof

Remark.

Definition D.5.

Theorem D.6.

Proof

θ
(θ) .

( )

φ (θ) φ(θ)

φ
φ φ

φ

θ , θ
< α <

φ(αθ ( α)θ ) φ (αθ ( α)θ ) (αφ (θ ) ( α)φ (θ )).

( ) θ φ(θ)

$

< < <
,

, ( ).

( )
ε >

, ( ) > ε θ φ(θ) > ε

θ φ(θ) > ε .

are continuous on . It therefore suffices to prove convexity on the interior
of . Now on the interior of , the function is differentiable, and we can
exchange differentiation and expectation. A computation of the second derivative
gives

Let and . The inequality now implies
that the second derivative is positive, and the convexity follows.

The “near i.i.d.” property of the sequence is captured by the following assump-
tion:

The limit lim exists pointwise.
We allow the limit or any of the to take the value . As we saw above,

in the i.i.d. case, .

: Any pointwise limit of convex functions is convex: for fix the points
and 0 1. Then

1 lim 1 lim 1

Since both limits exist, the result follows. Note that infinite values are allowed,
but negative infinite values are never taken by convex functions.

While convexity is inherited by pointwise limits, differentiability may
not be; see Assumption D.7 below.

sup

Note that this definition agrees with the definition of for the i.i.d. case.

[ ]

lim sup
1
log [ ] inf

. Define inf : , which is finite by assumption. Now
fix some 0 and note that

[ ] : : sup

:
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θ φ(θ) θ

θ φ(θ) > ε
θ , θ . . . . , θ

, θ φ(θ ) > ε .

/

θ φ(θ ) > ε θ > φ(θ ) ( ε)

φ(θ ) ( ε)

,

θ φ(θ ) > ε

φ(θ ) φ (θ ) ( ε) .

φ (θ ) φ(θ )

, ε

ε

φ

< < <
v ( , ) θ φ (θ ) v

( , ) ( ) .

φ
φ (θ) φ (θ)

θ

Since the function is obviously continuous in , for each the set :
is open. From a standard result in analysis (the Heine-Borel

theorem) we can find a number of points so that

[ ] :

Now let us compute the probability that falls into one such set.

[ ]

exp [ ]

by Chebycheff’s inequality. Since the last expectation is, by definition ,
we have by a union bound (A.12)

lim sup
1
log [ ]

lim sup
1
log

lim sup
1
log exp [ ]

However, since for each we have and does not depend on ,
we finally have

lim sup
1
log [ ]

and the result follows since was arbitrary.

This bound is weaker than in the i.i.d. case in the sense that we only
allow sets! To bridge the gap between bounded and unbounded sets, the
general technique of §D.3 can be used.
As in the i.i.d. case, stronger assumptions are necessary for the lower bound.

is differentiable on .
Note that if is not open, we have to be careful around the boundary.

Lower bound:

lim inf
1
log inf

The last condition is obviously satisfied if is continuous, and if
lim sup and lim inf . If , these condi-
tions should hold as approaches the boundary of .
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( , ) v < ε v < ε ( ) .

( )

( ) ( ) ( ) ( ),

φ

( , ) v < ε ( )

v < ε ( )

v < ε ( ). ( . )

v ε ( ) ( )

( )

φ (θ ) φ (θ ) v ε

v ε ( ) φ (θ ) φ (θ ) v ε .

( . )

We try to follow the proof of Theorem 1.5; however, since the i.i.d. assumption
is not in force, the change of measure is different, and we cannot use the central-
limit argument. The idea is still to change to a measure under which the event we
consider is not rare, and bound the effect of the change of measure.
Note that if for all then there is nothing to prove. If it is

finite, then under the hypotheses it is easy to see that .
The crux of the proof is the following estimate.

0

lim inf
1
log

. Denote the distribution of by . Fix a positive
such that and . Then

[ ]

Define a new distribution by the exponential change of measure

where the last equality follows from the definition of . By definition of ,

[ ]

[ ]

[ ] 3

In order to bound the integral in (D.3) from below, we use Chebycheff’s inequality
for the function , with positive and small;

[ ]

exp [ ]

so that

lim sup
1
log [ ]

4
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But as 0, so that for small enough, the
right-hand side of (D.4) is strictly negative. Thus [ ] con-
verges to zero exponentially fast. Using the same argument, we also obtain that

[ ] 0. Therefore [ ] con-
verges to 1 (in fact exponentially fast), and (D.3) now implies

lim inf
1
log

and Lemma D.9 is established.

Since in Lemma D.9 is arbitrary, we have

lim inf
1
log

and since this holds for every , the theorem follows.

: The “small noise” case. Let be i.i.d. with moment
generating function that is finite for all . Let be bounded ran-
dom variables, with where the are non-random. Let

and . Clearly

1
log exp exp[ ]

1
log exp exp

so that D.3 holds, for example, whenever 0. The other assumptions clearly
depend only on the distribution of .
The general Gärtner-Ellis Theorem is difficult even to state. It provides bounds

for open and closed sets. So, let the sequence now take values in .
Define and as in (D.1) and Definition D.5, except that now is re-
placed with the scalar product . Let be following the set of points in :

: such that for all in

That is, if there is a plane (with slope ) that is tangent to at so
that is strictly above the plane except at . Compare this to the conditions of
Theorem D.8.
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Theorem D.11 .

Exercise D.12.

Example D.13.
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5

( ) θ , ρ(5 ) .

Let be random variables with values in
so that Assumption D.3 holds. Then

(i) For every closed set

(ii) For every open set ,

(iii) Assume that is differentiable in , and that is non-empty. Assume
further that is steep, that is if is on the boundary of , then

implies

If is also lower semicontinuous, then the large deviations principle holds
with a good rate function .

Gärtner-Ellis

lim sup
1

log inf

lim inf
1

log inf

Note that, unless strong assumptions are made on , it is possible that the
bounds are not tight:

Show that if is an exponential random variable with mean ,
then the lower bound in Theorem D.11 is not tight. Hint: the set contains only
the point 0.

As an immediate application, one can obtain a large deviations principle for
finite-state Markov chains.

Let be an ergodic Markov chain with a finite state
space, say 1 2 , and with transition matrix . Let be
defined through for some function , with values in . Define

Let and let denote the largest eigenvalue of the matrix
. Define

sup log

Then the sample mean satisfies a large deviations principle
with good, convex rate function . For a proof of this statement, see [DZ, §3.1].
This can be shown [DZ, §3.2] to be equivalent to the level II result we obtain (us-
ing a different method) in §D.4.
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D.2. Subadditivity Arguments

D.3. Exponential Approximations

for every closed set

The sequence of measures is called exponentially tight if, for
any finite there exists a compact set so that

Let be exponentially tight and be a rate function. If the up-
per bound (2.4u) holds for compact sets, it also holds for closed sets. If the lower
bound (2.4l) holds for all open sets, then is a good rate function.

The only method we pursue for the proof of lower bounds is a direct change-of-
measure approach. Consider, however, that for independent random variables,

2

since the mean of random variables is certainly greater than if both the first
half sum and the second half sum have that property. This implies that the function

log

is subadditive, that is . But any subadditive function
satisfies

lim inf

provided for all . This can be exploited to prove the existence
of a lower bound, quite easily and in general circumstances. In fact, the same sub-
additivity property holds for the probability that the sample means of more gen-
eral i.i.d. random variables lie in a convex set. This method is applicable also to
random variables that are “close to i.i.d.” See [DZ, DeS] for more details. Our
approach, when applicable, has the advantage of giving more information about
the way in which the rare event in question takes place.

Since large deviations deals with probabilistic behavior on an exponential scale,
it should be expected that some “exponential approximations” can be used. This
subject is discussed in detail in [DZ]. As before, we consider random variables
with values in a complete separable metric space , with metric .
The first result concerns the upper bound. From Lemma 2.11 it is clear that it

suffices to establish the lower bound for small balls around each point. It would
be convenient if we could establish the upper bound by checking (2.1) for com-
pact sets only, and not . This is true under an “exponential
tightness” condition.

lim sup
1
log
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π
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Assume satisfies the large deviations principle with
rate function . If satisfies

for all

then satisfies the large deviations principle with rate function .

The next theorem allows to establish a large deviations principle for a process
by establishing the principle for another process, and proving that they are close
in an appropriate sense.

lim
1
log 0

Since the large deviations principle in its abstract formulation (Definition 2.10)
deals with probability measures, it is clear that the two processes need not be de-
fined a priori on the same probability space. It suffices that we can find a proba-
bility space so that the marginals agree with the laws of and respectively. For
details, see [DZ, §4.2].

Armed with our understanding of jump Markov processes on a finite state space,
we can venture into exploring an advanced topic: Level II large deviations. This
is the study of how much time a process spends in various states over a long time
interval. Contrast this with our previous question of how a jump process moves,
and you see that the question is a bit different: we look at the likelihood of an oc-
cupation measure, similar to Sanov’s Theorem, as opposed to a sample path drift,
which in some way is like Chernoff’s Theorem. We need to develop a bit of no-
tation before we can state the result precisely. The reader will note that Level II,
at least at this introductory level, is difficult only in forcing the reader to come to
grips with a new concept; the mathematics is simple, and will be quite familiar to
those who have read this far. In fact, we did many level two calculations implic-
itly for the large deviations principle of finite levels processes; this will become
clear as we proceed.
We state and prove a Level II result only for a very simple jumpMarkov process
that lives on exactly states, as presented in §8.4 or in §7.1. We let

, the unit vector in the coordinate direction, when the process is in the
state. We let denote the jump rate from state to state . We begin by recalling
Definition A.82 of the empirical distribution of a jump Markov process

:
1

1
[ 1] [ ]

5

Note that is itself a stochastic process that lives on a simplex

: 1 0 6
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Proof of the upper bound
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Let be defined by (D.5), where is a process on spec-
ified by . Then satisfies a large deviations principle with good rate func-
tion . That is, if and are respectively closed and open sets in , then

We define a rate function for as follows:

sup 1 7

This should look familiar: it is form of the rate function (see Lemma 8.20)
with jump rates , for travel in direction 0, with 0. This should
be believable; if we travel in such a way as to make the average amount of time
spent on each level equal to , then it stands to reason that the long term jump
rate in direction is . It is not hard to see that is a rate function:
positive, convex, and lower semicontinuous. The live on , a compact state
space, so of course the level sets are compact. Also, is obviously bounded
by . (This corresponds to no transitions taking place at all.) Our aim
in this section is to prove the following large deviations principle.

lim sup
1
log inf

lim inf
1
log inf

The stochastic process in Theorem D.17 is . We are asking what the likeli-
hood is that over a very long time interval, the observed occupation distribution
is in an unlikely set. Remember, by Lemma 7.4, the occupation measure is very
likely to be near the invariant distribution.
This type of large deviations principle is quite useful in practice. Many inter-

esting questions can be formulated in terms of functionals of the occupation dis-
tribution. For example, the process would be confined to a subset of states
over an interval 0 if the occupation measure 1. That is, we could
formulate a Freidlin-Wentzell escape problem in terms of the occupation distri-
bution. There are, of course, many other examples of interesting functionals of
the path that may be expressed in terms of the occupation measure.
The proof of Theorem D.17 follows the usual procedure. The only novelty is

the type of process. The upper bound follows from an exponential Chebycheff
estimate, and the lower bound follows from a change of measure. Let’s get to it.

. We follow Donsker and Varadhan [DV1]. Let
be given. Then by Theorem B.3 using (B.31) with exp ,

exp [ ] 1
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is a martingale. We can write this martingale in terms of the empirical distribution
as follows:

exp 1

is a martingale. Therefore, for any and any measurable set ,

max

exp 1

min

exp sup 1

Therefore, for each ,

max
min

exp sup 1

and so

lim sup
1
log sup 1

Since this holds for each , we also have

lim sup
1
log inf sup 1 8

Wewill have the upper bound if we can exchange sup and inf in (D.8) for closed
sets . This interchange follows from a general argument given in [DVa].
However, in our case amuch simpler argument applies. Note that since is closed
and is a subset of the compact set , it is compact. Now the function

1

is convex in and concave (actually linear) in . Therefore by theMin-Max Prin-
ciple, Theorem A.44 we can interchange the sup and inf, and we are done.
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Proof of the lower bound
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. As usual, the lower bound is computed locally: given
any and any 0, we try to find

We use both the equivalence of the upper and lower bounds (Theorem 8.19),
and the approximation result Lemma 8.61 (although we really don’t need the full
power of either of these). First, given , we take any set of rates so that

log

(the will have as an invariant measure). That such a set exists follows from
the fact that log 1 as , so that we need only search
for a minimizer in a bounded region of rates . Then given an 0, using
Lemma 8.61 we find a set of jump rates and an associated invariant measure
so that

2 for all
2 for all

0 for all
We will show that

lim inf
1
log

which implies the lower bound, since and, for some ,

The key element of the proof is (surprise!) a change of measure. Letting
:

and letting represent probabilities associatedwith jump rates , and rep-
resent probabilities associated with jump rates , we calculate

[ ] exp log

(here we used the convention ). It is very easy to show (and is done
rigorously in Lemma 7.6) that

lim
1

log log
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Appendix D. LARGE DEVIATIONS TECHNIQUES
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and furthermore Lemma 7.4 shows that, under the -process, for every 0
there is a 0 and such that for ,

These equations imply that

lim inf
1
log log

Now we use the following equality, which is shown as part of the proof of Theo-
rem 8.19:

sup 1 inf log

where is the set of all transition rates that have as an invariant distri-
bution. Then noting that our construction of and makes close to
finishes the proof of the lower bound.
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